Towards Lightweight Time Series Forecasting: a Patch-wise Transformer with Weak Data Enriching

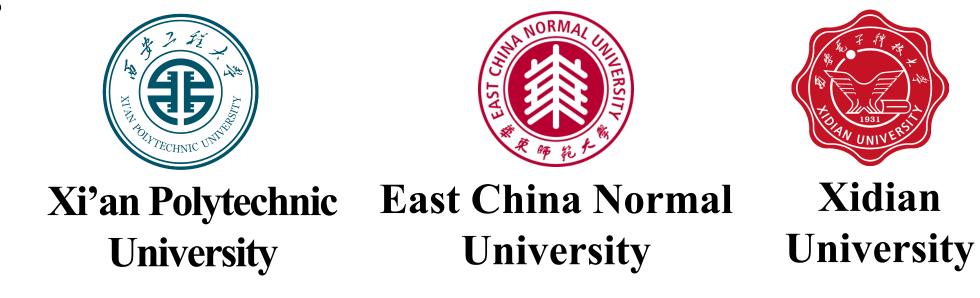
Meng Wang¹, Jintao Yang¹, Bin Yang^{2,*}, Li Hui^{3,4}, Tongxin Gong¹, Bo Yang¹, Jiangtao Cui³

1. School of Computer Science, Xi'an Polytechnic University, China

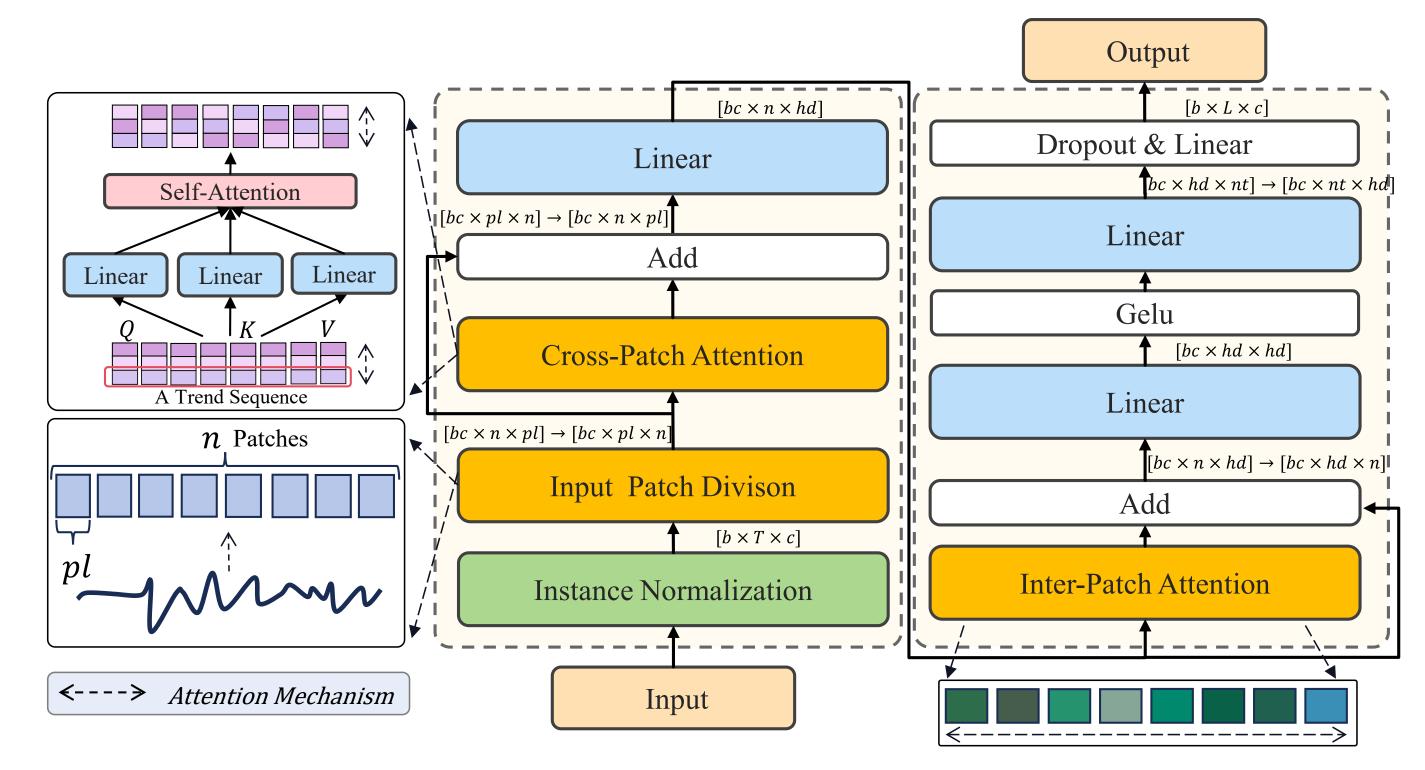
2. School of Data Science and Engineering, East China Normal University, China / *Corresponding author

3. School of Computer Science and Technology, Xidian University, China

4. Shanghai Yunxi Technology, China



Transformer-based time series forecasting faces challenges in balancing resource efficiency and contextual awareness, particularly for edge deployment where computational constraints limit complex architectures. Existing methods suffer from three critical limitations: excessive inference costs in traditional Transformers, neglect of future covariates (e.g., weather forecasts) crucial for abrupt change prediction, and inability to model multimodal weak labels or implicit temporal patterns (e.g., holidays) when explicit covariates are absent. To address these issues, we propose LiPFormer a lightweight framework combining patch-wise attention to capture global-local patterns without positional encoding, and dual-encoder contrastive learning to unify explicit/implicit covariates through weak label enrichment. This design reduces



computation by 30% while maintaining predictive accuracy, achieving efficient contextual integration for dynamic scenarios.

Challenges

- >Heavyweight Transformers have high computational complexity, limiting deployment in resource-constrained scenarios.
- Efficiency-accuracy trade-off requires balancing predictive performance with computational simplicity.
- >Weak label integration struggles with heterogeneous multimodal data (text/numerical covariates).

Training Methodologies

- ➢ Pre-training with Weak Label Enriching : A contrastive learning-based module uses dual encoders (Covariate Encoder and Target Encoder) to pre-train on "covariatetarget" pairs, leveraging weak labels (e.g., temporal attributes, weather) as future covariates. It maximizes cosine similarity between positive pairs (ground truth sequences and covariates) while minimizing negative pairs via symmetric crossentropy loss.
- > Prediction-Oriented Training : The Base Predictor processes normalized, patched input sequences through a lightweight backbone. Final predictions are refined using future covariate dual-encoder guidance, optimized with Smooth L1 loss to balance accuracy and robustness during training.

Base Predictor block.

Key Components

Base Predictor

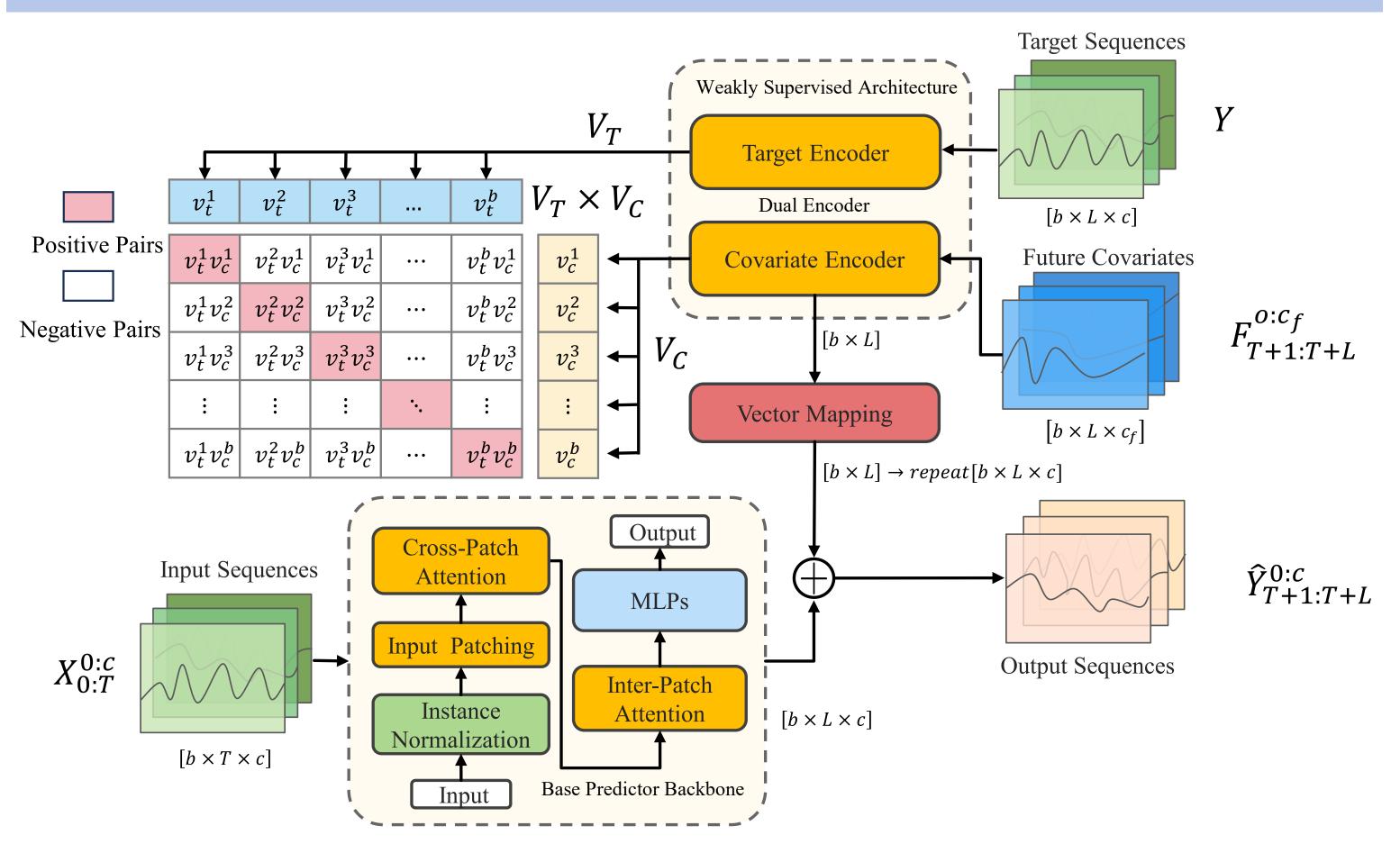
- Lightweight Architecture: Eliminates Layer Normalization (LN), Feed-Forward Networks (FFNs), and Positional Encoding (PE) to simplify the Transformer backbone. Replaces traditional Transformer with linear transformation-based attention for reduced complexity.
- Patch-wise Attention: Divides input sequences into patches and introduces two novel patch-wise mechanisms—Inter-Patch Attention (for local coherence preservation) and Cross-Patch Attention (for global temporal dependency capture). This addresses fixed-patch-size limitations by dynamically modeling multi-scale periodic patterns.

Weakly Supervised Dual Encoder Framework

- Explicit Covariate Handling: For datasets with available future covariates (e.g., weather, time), a co-trained Covariate Encoder maps numerical/textual features into a semantic space aligned with target sequences via Res-attention and linear layers.
- Implicit Covariate Augmentation: For scenarios lacking explicit covariates, temporal attributes (e.g., holidays, rush hours) are encoded and embedded into a shared latent space with target sequences. A contrastive learning framework (dual encoder: target sequences vs. covariates) maximizes their correlation, enabling implicit supervision.
- Seamless Integration: The weak label enriching module is transplanted into existing forecasting frameworks to enhance predictive capacity while maintaining lightweight design.

Experments

Model Components



The architecture of LiPFormer.

SOTA was achieved on Nine real-world datasets:

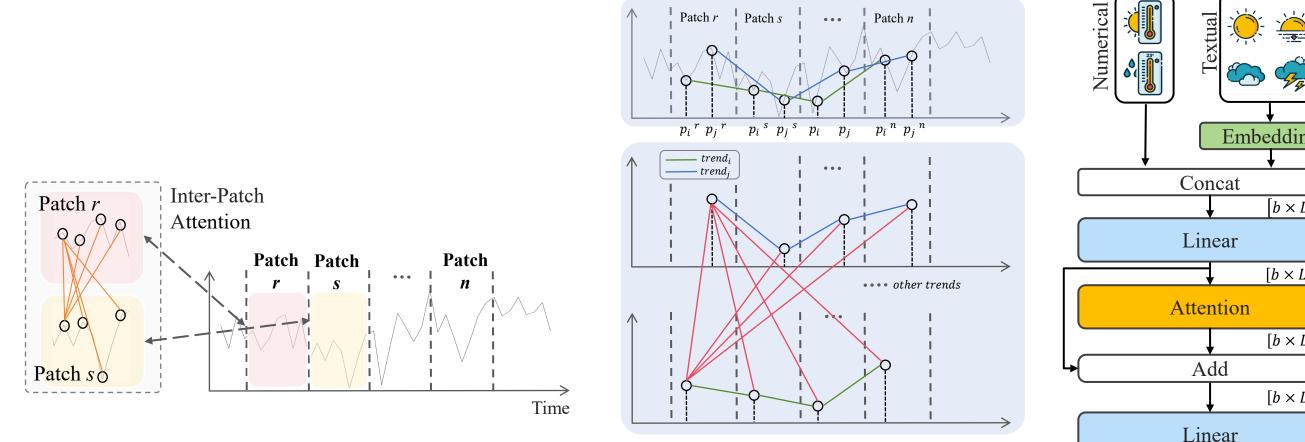
• Multivariate long-term time series forecasting results with LiPFormer.

Models		LiPFormer			i	Transfo	ormer		TimeM	lixer		FGN	IN		Patch7	TST		DLin	ear	TiDE		
Met		MSE		Efficiency			Efficiency			Efficiency	MSE		Efficiency	MSE		Efficiency	MSE		Efficiency	MSE		Efficiency
	96	0.359		0.75s	0.392		1.17s	0.385		2.87s	0.647		0.58s		0.399	2.11s		0.399	0.28s	0.375		7.84s
Th1	192	0.404		0.14s	0.437		0.19s	0.424		0.58s		0.583	0.1s	0.414		0.32s		0.436	0.05s	0.412		0.96s
ETTh1	336			0.27G		0.469	18.02G	0.456		1.42T	0.704		1.05G		0.436	17.09G		0.443	4.15M	0.435		1.13G
	720	0,450	0.453	66K	0.553	0.537	6.4M	0.601	0.559	4.27M	0.772	0.654	592K	0.449	0.466	6.90M	0.472	0.490	18.62K	0.454	0.465	2.53M
	96	0.265	0.327	0.80s	0.303	0.364	1.04s	0.296		2.42s	0.479	0.496	0.6s	0.274	0.336	2.07s	0.289	0.353	0.29s	0.27	0.336	7.83s
ETTh2	192	0.335	0.374	0.14s	0.409	0.422	0.19s	0.384	0.415	0.59s	0.568	0.540	0.15s	0.339	0.379	0.33s	0.383	0.418	0.04s	0.332	0.38	1.27s
	336	0.364	0.395	0.27G	0.440	0.450	18.02G	0.383	0.423	1.42T	0.692	0.604	1.05G	0.331	0.380	17.09G	0.480	0.465	4.15M	0.36	0.407	1.13G
	720	0.392	0.425	66K	0.439	0.468	6.4M	0.399	0.453	4.27M	1.107	0.774	592K	0.379	0.422	6.90M	0.605	0.551	18.62K	0.419	0.451	2.53M
	96	0.296	0.338	3.1s	0.318	0.366	3.56s	0.305	0.358	10.62s	0.403	0.427	4.49s	0.290	0.342	8.55s	0.299	0.343	1.12s	0.306	0.349	32.51s
Ľm	192	0.336	0.360	0.55	0.347	0.387	0.71s	0.343	0.379	2.15s	0.426	0.440	0.46s	0.332	0.369	1.54s	0.335	0.365	0.20s	0.335	0.366	4.64s
ETTm1	336	0.365	0.379	0.27G	0.380	0.405	18.02G	0.371	0.394	1.42T	0.450	0.454	1.05G	0.366	0.453	17.09G	0.369	0.386	4.15M	0.364	0.384	1.13G
	720	0.408	0.413	66K	0.436	0.439	6.4M	0.427	0.423	4.27M	0.498	0.481	592K	0.420	0.533	6.90M	0.425	0.421	18.62K	0.413	0.413	2.53M
5	96	0.160	0.244	3.24s	0.180	0.273	2.89s	0.181	0.270	9.45s	0.225	0.322	2.74s	0.165	0.255	7.68s	0.167	0.260	1.21s	0.161	0.251	32.01s
ETTm2	192	0.217	0.285	0.55	0.243	0.315	0.74s	0.239	0.313	2.07s	0.296	0.368	0.56s	0.220	0.292	2.05s	0.224	0.303	0.21s	0.215	0.289	4.21s
Ľ	336	0.273	0.322	0.27G	0.299	0.352	18.02G	0.289	0.340	1.42T	0.423	0.460	1.05G	0.278	0.329	17.09G	0.281	0.342	4.15M	0.267	0.326	1.13G
	720	0.348	0.372	66K	0.382	0.405	6.4M	0.452	0.455	4.27M	0.497	0.493	592K	0.367	0.385	6.90M	0.397	0.421	18.62K	0.352	0.383	2.53M
Electricity	96	0.131	0.224	5.12s	0.147	0.249	4.24s	0.134		-	0.211	0.319	3.63s	0.129	0.222	16.19s	0.140	0.237	2.61s	0.132	0.229	1452.56s
tric	192	0.147	0.238	1.01s	0.169	0.271	0.97s	0.339	0.414	-	0.226	0.331	0.78s	0.147	0.24	2.20s	0.153	0.249	0.46s	0.147	0.243	255.30s
leci		0.163		2.94G		0.292	66.56G		0.370	2.03T	0.242	0.345	1.51G	0.163	0.259	195.96G	0.169	0.267	47.57M	0.161	0.261	250.86G
Ш Ш	720	0.199	0.285	66K	0.236	0.329	6.4M	0.557		4.27M	0.274	0.370	592K	0.197	0.29	6.90M	0.203	0.301	18.62K	0.196	0.294	34.10M
S	96	0.382	0.243	3.82s		0.318	3.14s	0.385			0.721	0.478	-	0.367	0.251	9.84s	0.410	0.282	1.58s	0.336	0.253	2652.14s
Traffic		0.397		1.02s	0.455		0.63s	0.394		_		0.494	-		0.259	1.69s		0.287	0.29s	0.346		399.65s
Tra		0.411		7.91G	0.487		177G	0.413				0.503	4.06G		0.265	526.22G		0.296	127.76M	0.355		1.77T
		0.451		66K	0.555		6.4M	0.452			0.856		592K	0.434		6.90M		0.315	18.62K	0.386		88.49M
er		0.146				0.211		0.151				0.236			0.199			0.237		0.166		
Weathe		0.189		0.52s	0.202		0.50s	0.193				0.274	0.32s		0.243	0.67s		0.282	0.11s	0.209		7.79s
We		0.244		0.78G	0.256		5.12G		0.281		0.255		0.39G		0.283	51.27G		0.319	12.45M	0.254		6.17G
		0.313				0.342	6.4M		0.334			2.000	592K		0.335	6.90M		0.362	18.62K	0.313		3.93M
Electricity Price		0.486		2.54s		0.549	1.63s	0.621		4.52s		0.552	1.31s		0.537	2.74s		0.480	0.38s	0.585		3.28s
tric		0.528		0.50s	0.749		0.31s	0.720		0.96s		0.563	0.21s		0.591	0.50s		0.447	0.11s	0.618		0.65s
llect Pri		0.459			0.747		1.22G	0.704		12.68G		0.557	11.79M	0.773		4.88G		0.533	1.18M	0.643		0.22G
<u> </u>		0.495		74.86K		0.648	6.4M		0.566			0.545	592K		0.629	6.90M		0.520	18.62K	0.632		2.02M
e		0.136			0.182		1.05s	0.169		2.79s		0.464	1.01s		0.248	1.60s		0.254	0.22s	0.150		1.70s
Cycle		0.145			0.212		0.18s	0.203		0.58s		0.475	0.12s		0.254	0.29s		0.254	0.05s	0.158		0.21s
C		0.152		0.84G	0.232		1.02G	0.146		6.34G		0.472	18M		0.263	2.44G		0.256	0.59M		0.246	
		0.159		74K	0.258		6.4M	0.175		4.27M		0.480	592K		0.284	6.90M		0.267	18.62K		0.256	1.92M
Count		51/	12		0	/0		0/	1		0	/0		11	/23		0/	11		15	/29	

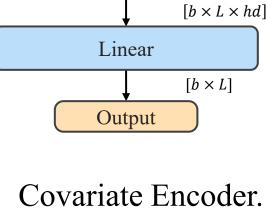
• LiPFormer outperforms state-of-the-art models in multivariate time series forecasting, achieving superior accuracy and robustness.

Deteceta	Matria		ET	Th1		ET	Th2			ET	Гm1		ETTm2				
Datasets	Metric	96	192	336	720	96	192	336	720	96	192	336	720	96	192	336	720
Without	MSE	0.366	0.401	0.441	0.461	0.270	0.332	0.370	0.394	0.327	0.348	0.386	0.434	0.167	0.225	0.280	0.364
Cross-Patch attn.	MAE	0.380	0.424	0.450	0.461	0.329	0.371	0.396	0.427	0.365	0.378	0.398	0.425	0.255	0.295	0.333	0.386

Cross-Patch Attention



The construction of Inter Patch and Cross Patch attention.



 $b \times L \times c_f$

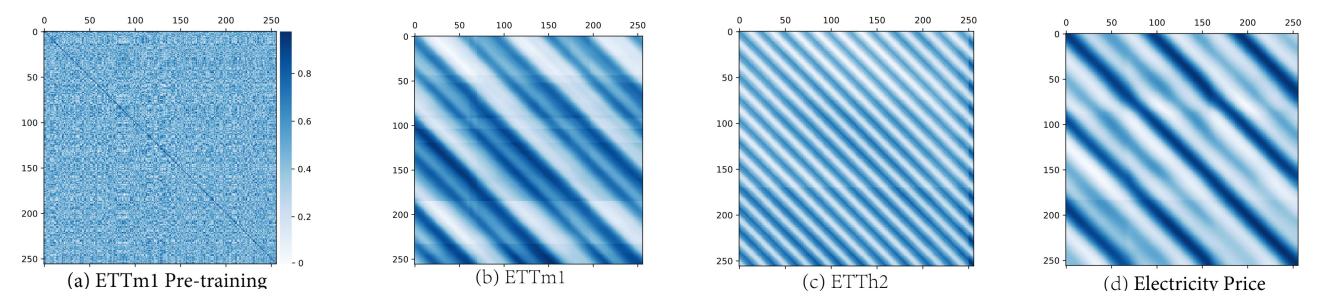
 $[b \times L \times hd]$

 $[b \times L \times hd]$

Without	MSE	0.364	0.413	0.458	0.472	0.271	0.335	0.383	0.586	0.309	0.342	0.370	0.430	0.164	0.220	0.275	0.353
Inter-Patch at	ttn. MAE	0.380	0.408	0.434	0.455	0.329	0.371	0.405	0.477	0.350	0.367	0.384	0.417	0.251	0.289	0.324	0.382
Neither	MSE	0.379	0.417	0.456	0.466	0.273	0.379	0.397	0.422	0.314	0.340	0.377	0.423	0.168	0.224	0.276	0.356
INCILIEI	MAE	0.392	0.412	0.432	0.453	0.332	0.388	0.427	0.441	0.356	0.371	0.393	0.419	0.255	0.293	0.330	0.379
LiPFormer	MSE	0.359	0.404	0.444	0.450	0.265	0.330	0.364	0.392	0.296	0.336	0.365	0.408	0.160	0.217	0.273	0.348
	MAE	0.379	0.405	0.425	0.453	0.327	0.369	0.395	0.425	0.338	0.360	0.379	0.413	0.244	0.285	0.322	0.372

• Cross-Patch outperforms Inter-Patch alone, and the two attention mechanisms are complementary.

• Visualization of the logitsmatrices for Weakly Supervised Architecture.



• Visualization reveals aligned predictions and covariates via diagonal similarity optimization, periodic patterns, and multimodal interactions.