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Introduction

Training Methodologies

Experments

Challenges

Heavyweight Transformers have high computational complexity, limiting 
deployment in resource-constrained scenarios.

Weak label integration struggles with heterogeneous multimodal data (text/numerical 
covariates).

Pre-training with Weak Label Enriching : A contrastive learning-based module uses
dual encoders (Covariate Encoder and Target Encoder) to pre-train on "covariate-
target" pairs, leveraging weak labels (e.g., temporal attributes, weather) as future
covariates. It maximizes cosine similarity between positive pairs (ground truth
sequences and covariates) while minimizing negative pairs via symmetric cross-
entropy loss.

 SOTA was achieved on Nine real-world datasets:

Prediction-Oriented Training : The Base Predictor processes normalized, patched input 
sequences through a lightweight backbone. Final predictions are refined using future 
covariate dual-encoder guidance, optimized with Smooth L1 loss to balance accuracy 
and robustness during training.
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Efficiency-accuracy trade-off requires balancing predictive performance with 
computational simplicity.
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Key Components
 Base Predictor
 Lightweight Architecture: Eliminates Layer Normalization (LN), Feed-Forward Networks (FFNs),

and Positional Encoding (PE) to simplify the Transformer backbone. Replaces traditional
Transformer with linear transformation-based attention for reduced complexity.

 Patch-wise Attention: Divides input sequences into patches and introduces two novel patch-wise
mechanisms—Inter-Patch Attention (for local coherence preservation) and Cross-Patch Attention
(for global temporal dependency capture). This addresses fixed-patch-size limitations by
dynamically modeling multi-scale periodic patterns.

 Weakly Supervised Dual Encoder Framework
 Explicit Covariate Handling: For datasets with available future covariates (e.g., weather, time), a

co-trained Covariate Encoder maps numerical/textual features into a semantic space aligned with
target sequences via Res-attention and linear layers.

 Implicit Covariate Augmentation: For scenarios lacking explicit covariates, temporal attributes
(e.g., holidays, rush hours) are encoded and embedded into a shared latent space with target
sequences. A contrastive learning framework (dual encoder: target sequences vs. covariates)
maximizes their correlation, enabling implicit supervision.

 Seamless Integration: The weak label enriching module is transplanted into existing forecasting
frameworks to enhance predictive capacity while maintaining lightweight design.

 Multivariate long-term time series forecasting results with LiPFormer.

 Visualization of the logitsmatrices for Weakly Supervised Architecture.

• LiPFormer outperforms state-of-the-art models in multivariate time series forecasting, achieving superior 
accuracy and robustness.

• Visualization reveals aligned predictions and covariates via diagonal similarity optimization, periodic 
patterns, and multimodal interactions.

The architecture of LiPFormer.

The construction of Inter Patch and Cross Patch attention.
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Transformer-based time series forecasting faces challenges in balancing resource 
efficiency and contextual awareness, particularly for edge deployment where 
computational constraints limit complex architectures. Existing methods suffer from 
three critical limitations: excessive inference costs in traditional Transformers, neglect 
of future covariates (e.g., weather forecasts) crucial for abrupt change prediction, and 
inability to model multimodal weak labels or implicit temporal patterns (e.g., holidays) 
when explicit covariates are absent. To address these issues, we propose LiPFormer—
a lightweight framework combining patch-wise attention to capture global-local 
patterns without positional encoding, and dual-encoder contrastive learning to unify 
explicit/implicit covariates through weak label enrichment. This design reduces 
computation by 30% while maintaining predictive accuracy, achieving efficient 
contextual integration for dynamic scenarios.

• Cross-Patch outperforms Inter-Patch alone, and the two attention mechanisms are complementary.
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