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Introduction
I The location selection (LS) problem aims to mine the optimal location

from a set of candidates to place a new facility such that a score (i.e.,
benefit or influence on some given objects) can be maximized.

I State-of-the-art LS studies assume each object is stationary and can be
definitely influenced by only a single facility (e.g., by the nearest facility).

I In real-world scenarios, objects (e.g., people, vehicles) are mobile and are
influenced by multiple facilities simultaneously, where the influence is in
fact a probabilistic event.
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I In this paper, we propose a novel and generalized LS problem called PRIME-
LS, which takes mobility and probability factors into account.

I We present an algorithm called PINOCCHIO, which leverages two pruning
rules based on a novel distance measure, to solve PRIME-LS, and further
extend it by incorporating two optimization strategies.

PRIME-LS Problem
I We use a set of discrete positions O = {p1, p2, . . . , pn} to denote a moving

object (continuous data can be discretized by sampling).

I As the probability of an object to access a facility is negatively correlated to
the distance, we assume the influence probability only depends on distance,
and use a monotonically decreasing probability function PF to depict the
behavior pattern of influence.

I At any position of a moving object, the probability that she is influenced
by a facility is independent. Inspired by Influence Model, we define the
probability as cumulative influence probability:

Prc(O) = 1−
n∏

i=1

(1− Prc(pi)), (candidate facility c influences O)

I Given a user-specified threshold τ , a company can set a baseline of mini-
mum expectation of Prc(O), where facility c influences moving object O
iff Prc(O) ≥ τ . This means companies can tune τ to make a trade-off
between quantity and quality of influenced customers.

I The influence value is the number of moving objects that are influenced
by a candidate facility c , denoted as inf (c).

I The PRobabilistic Influence-based Mobility-awarE Location Selection
(PRIME-LS) problem aims to mine the optimal candidate c ∈ C such
that ∀c ′ ∈ C − {c}, inf (c) ≥ inf (c ′).

Solution to PRIME-LS
I As activity regions of moving objects are highly overlapping and may

enclose some candidates, where existing pruning techniques cannot be
adopted, we propose a novel pruning measure, minMaxRadius, to quantify
the cumulative influence probability.

minMaxRadius(τ, n) = PF−1(1− (1− τ )1/n), (n positions)

I Based on minMaxRadius, we design two pruning rules, influence arcs (IA)
rule and non-influence boundary (NIB) rule.

I Key Idea of PINOCCHIO (Probabilistic INfluence-based LOCation
SeleCtion TecHnique over MovIng Objects):
I Calculate minMaxRadius and the IA/NIB areas for each object.

I Based on IA rule, we identify the candidates that influence the object.

I For the remnant candidates, NIB rule is used to exclude the candidates
that cannot influence the object.

I The remnant candidates are verified using the definition of influence.

Solution to PRIME-LS (Cont.)
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(a) Influence arcs (IA) rule
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(b) Non-influence boundary (NIB) rule
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I We enhance the PINOCCHIO algorithm, referred to as PINOCCHIO-VO,
by incorporating two optimization strategies.
I Upper-lower bounds of influence. If maxInf (c) < maxminInf , c

cannot influence the largest number of objects and can be pruned, where
maxInf (c) is the maximum of the possible influence of c , minInf (c) is
the identified influence of c and maxminInf = max

c∈C
minInf (c).

I Early stopping. The validation is accomplished by computing only
partial n′ positions of O instead of all the n positions, if Pr n−n′

c (O) ≤
1− τ , where Pr n−n′

c (O) =
∏n

i=n′+1(1− Prc(pi)) (n′ < n).

Experiment

I Two real-world check-in datasets: Foursquare (F) and Gowalla (G).

I PF : Prc(p) = ρ(d0 + dist(c, p))−λ (The probability of a user checking-in
at a POI decays as the power-law of the distance between them.)

I Effectiveness on Different Semantics: PRIME-LS, BRNN* (adapted
from NN-based MaxBRNN) and RANGE (range-based LS).

Avg. Precision @10 @20 @30 @40 @50 Avg. Better 
PRIME-LS 0.022 0.032 0.055 0.081 0.110 N/A 

Avg. RANGE 0.020 0.031 0.050 0.071 0.092 12% 

BRNN* 0.015 0.028 0.040 0.056 0.085 35% 

Average Precision Comparison 

I Performance Comparison: Compared to NA (baseline: scan all
object-candidate pairs), PINOCCHIO-VO has the best scalability, fol-
lowed by PINOCCHIO and PIN-VO* (PINOCCHIO-VO without pruning).
PINOCCHIO-VO prunes nearly 2/3 candidates.
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I Observation: If we expect a certain number of objects to be influenced,
the resulting locations are identical or very close with high accuracy, re-
gardless of how n and τ are set.


