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PINOCCHIO: Probabilistic Influence-Based
Location Selection over Moving Objects

Meng Wang, Hui Li, Jiangtao Cui, Ke Deng, Sourav S. Bhowmick, and Zhenhua Dong

Abstract—The location selection (Ls) problem, which aims to mine the optimal location from a set of candidates to place a new facility such
that a score (i.e., benefit or influence on some given objects) can be maximized, has drawn significant research attention in recent years.
State-of-the-art Ls techniques assume each object is static and can only be influenced by a single facility. However, in reality, objects (e.qg.,
people, vehicles) are mobile and are influenced by multiple facilities, which prevents classical Ls solutions from selecting accurate results.
In this paper, we introduce a generalized Ls problem called Prive-Ls which takes mobility and probability factors into consideration to
address the aforementioned limitations. Specifically, given a set of candidate locations, Prive-Ls aims to mine the optimal location which
can influence the most number of moving objects. Also, to address the problem we propose an efficient algorithm called PinoccHio that
leverages two pruning rules based on a novel distance measure. These rules enable us to prune many inferior candidate locations prior to
influence computation, paving the way to efficient and accurate solution. Furthermore, we extend PinoccHio (PinoccHio-vo) by incorporating
two optimization strategies during candidate validation phase, which further reduce unnecessary computations. Experimental study over
two real-world datasets demonstrates superiority of our framework in comparison to state-of-the-art Ls techniques.

Index Terms—Moving objects, location selection, spatial database
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LOCATION selection (LS) problem has received consider-
able research attention due to the proliferation of GPs
equipped mobile devices and location-based services (LBS)
(e.g., Gowalla, Foursquare). Given a set of objects () with their
positions and a set of candidate locations C, many existing
Ls techniques aim to mine a candidate location c € C such
that ¢ can influence the maximum number of objects [1].
Here, the influence of a candidate c is typically defined as the
number of objects whose nearest neighbors is ¢ [2]. Finding
such optimal location from candidates to establish a new
facility has a wide spectrum of applications such as market-
ing, urban planning, resource allocation, scientific research,
etc. However, as classical LS assumes objects are static, some
limitations appear in the application scenarios where objects
are mobile.

1.1 Motivating Scenario
Consider the scenario where a company wishes to select an
optimal location from a set of candidates to place a new
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outdoor advertising balloon such that it can be observed by
as many potential customers as possible. To simplify the
discussion, we assume a customer can observe an advertis-
ing balloon with a certain probability according to the
Euclidean distance between the balloon and customer.’
Intuitively, farther distance leads to lower probability.
Moreover, the probability that a customer observes any
advertising balloon is independent. That is, a customer may
observe multiple balloons with different probabilities. Fur-
thermore, many customers are not static as they have to
travel from one point to another everyday. Typically, the
mobility of a customer can be modeled as a set of posi-
tions [3]. Notably, it is possible that a customer may visit
the nearest position from an advertising balloon occasion-
ally, while appear frequently at farther positions. Conse-
quently, whether a balloon is observed by her cannot be
solely attributed to the nearest position as other positions
may also play a role. Observe that at any position, the prob-
ability of a customer successfully observing an advertising
balloon is independent. Hence, inspired by Influence
Model [4], we define the probability for a moving object to
observe an advertising balloon as cumulative probability,
which is in fact the probability that a customer successfully
observes the balloon in at least one of her positions. Conse-
quently, whether an advertisement at a specific location
attracts a customer can be reformulated as a problem that
seeks to determine whether the cumulative probability on
all positions is high enough.

It is not difficult to see there exist series of other potential
applications similar to the aforementioned scenario. For

1. As we are studying a general problem that may also be used in
domains other than outdoor advertisement, where distance is the com-
mon factor among all these domains, we select to focus on distance
here although other factors may also play a role in specific scenarios
(e.g., content of an advertising balloon, altitude of a relay station, etc.).
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Fig. 1. Motivation example.

instance, an optimal location for a new retail shop or restau-
rant to be close to more mobile customers, a new monitoring
station to track wild animals” migration, etc.

Consider an example in Fig. 1. For all positions of object
O, the nearest candidate is ¢;. In fact, nearest neighbor-
based conventional Ls techniques [2] will report c; influen-
ces O; but not ¢;. However, the cumulative probability of
O, being influenced by ¢, might be higher than ¢; as O; has
four positions (p12, p13, P14, p15) Near c¢y. Similarly, the cumu-
lative probability of O; being influenced by ¢, might be
higher than that of O,, even though O, has a position ps;
that is a nearest neighbor of c; while her other positions are
far away. How can we select the optimal location that can poten-
tially influence the largest number of objects given that they are
mobile?

1.2 Limitations of Classical Location Selection
Techniques

Despite the significant progress made by state-of-the-art Ls

techniques [1], [5], [6], [7], [8], [9], [101, [11], [12], [13], [14],

[15], [16], [17], [18], [19], they are not effective in solving the

aforementioned scenario due to at least one of the following

drawbacks (detailed in Section 2).

e First, objects influenced by a facility are assumed to
be static. However, objects in LBs are mobile and fol-
low some mobility patterns [20]. Hence, considering
only a single instead of a set of positions ignores the
mobility of these objects, failing to provide a com-
plete description of an object’s activities.

e Second, the influence of a location on an object is
considered binary. That is, an object is either influ-
enced by a location or not, based on a distance metric
between them [13]. However, the binary criterion
may not be able to reflect the influence in real world,
which is in fact a probabilistic event.

e Last but not the least, the strict assumption [12] that
an object is influenced by only one facility (e.g., the
nearest neighbor), ignores others which might also
exhibit influence. Nevertheless, it is rational that an
object can be influenced by multiple facilities simul-
taneously. Hence, excluding other facilities in select-
ing location may reduce the effectiveness of existing
approaches.

In this paper, we study and provide solution to a more
generalized Ls problem called Prive-Ls (PRobabilistic Influ-
ence-based Mobility-awarE Location Selection), which
takes mobility and probability factors into consideration to
address the aforementioned limitations of traditional Ls
techniques.

1.3 Overview and Contributions

Informally, given a set of candidate locations C, a set of
moving objects (), each of which consists of a set of
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positions O, a certain distance-based influence probabil-
ity function PF and a user-specified influence probability
threshold 7, the goal of PriME-Ls is to mine the optimal
location which can influence the most number of moving
objects, each of which may be influenced by multiple
candidates simultaneously. In particular, we use the
term influence to cover all instances, such as attraction,
impact, signal intensity, coverage extent, visibility,
etc., in diverse practical applications. By varying the
probability functions (PF), PRIME-Ls can be applied to var-
ious moving objects with distinct mobility patterns (e.g.,
distance-based check-in pattern [21], [22], feature pat-
tern [23]), and even degenerate to traditional Ls prob-
lems. For instance, it degenerates to MaxBRNN [1] if
only NN locations are considered, or aggregate rRNN [24] if
the PF is associated with a distance metric. Empirical
studies demonstrate that our proposed PriME-Ls solution
can significantly improve the effectiveness of the mined
optimal location compared to classical Ls by around 10-
35 percent.

A straightforward solution to the PriME-Ls problem is
to exhaustively test all the object-candidate pairs. How-
ever, this naive strategy is computationally expensive.
This motivates us to explore effective pruning techniques
to reduce the cost of the solution. Specifically, as a mov-
ing object’s positions may scatter across a wide region,
any solution to the PriME-Ls problem needs to tackle
three grand challenges. First, moving objects’ activity
regions are highly overlapping in nature. Since majority
of state-of-the-art pruning strategies for Ls problem
assume that activity regions do not overlap [5], [25], they
cannot be adopted effectively. Furthermore, performan-
ces of these techniques degrade significantly when
moving areas of objects largely overlap [5]. Second, can-
didates may fall into the minimum bounding rectangle
(MBR) of an object’s activity region, which is in fact an
overlap, leading to the same challenge as above. As a
result, neither minDist nor minExistDist [1] between a
candidate and an object is available. Thus the corre-
sponding pruning techniques [1], [5], [6] are not applica-
ble as well. Third, in Ls over uncertain objects, only one
position contributes to the influence. In contrast, PRIME-LS
needs to evaluate the influence of multiple positions to
select the most influential candidate, which is much
more complicated. Large number of positions of each
moving object therefore incur substantial overhead for
the validation of a candidate.

In this paper, we present a novel algorithm called Pivoc-
cHiO (Probabilistic INfluence-based LOCation SeleCtion
TecHnique over MovIng Objects) to address the PRrIME-Ls
problem by employing two pruning rules based on a novel
distance measure called minMaxRadius. Intuitively, minMax-
Radius is a distance defined between a candidate and posi-
tions of a moving object. It enables us to quantify the
cumulative influence that a candidate location exhibits on
the moving object. The novel pruning rules therefore can
largely prune unnecessary candidates. Furthermore, we
extend PivoccHIO to a more efficient solution (referred to as
PiNoccHIO-vO) by optimizing its validation step based on
upper-lower bounding and early stopping strategies. Addi-
tionally, we utilize R-tree [26] for candidates to further
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TABLE 1
Notations
Notation Definition
Q a set of moving objects
C a set of candidate locations
r,m cardinalities of () and C, respectively
0, Oy, a moving object with multiple positions
D, Di a position of an object
¢ ¢ a candidate location
n, ny number of positions in O, O,
dist(p1,pa) distance between positions p; and p,
PF() probability function
Pr.(p), Pr.(O) cumulative influence probability of p or O
being influenced by ¢
P (0) partial non-influence probability of n — n/

positions of O
T probability threshold
inf(c) influence of candidate ¢
MBR(0) minimal bounding rectangle of O

reduce the response time.” We theoretically and empirically
show that our framework can avoid nearly 67 percent
unnecessary position validation by adopting our pruning
techniques. Along with our proposed optimization strate-
gies, it is able to produce correct answer and significantly
improve the efficiency by orders of magnitude. Interest-
ingly, our experimental study also reveals that if we expect
a certain number of objects to be influenced, the mined opti-
mal locations do not vary much no matter how we select the
threshold 7 and number of positions of an object. In sum-
mary, our contributions in this paper are outlined as
follows.

e To the best of our knowledge, this is the first effort to
formalize the problem of probabilistic influence-
based location selection over moving objects (i.e.,
Prive-Ls). Compared to existing work, PrivE-Ls takes
into account the influence of multiple positions, and
each moving object can be influenced by multiple
candidates. This improves the effectiveness of mined
optimal location significantly.

e We develop two novel algorithms, PiNoccHiO and
PiNvoccHio-vo, addressing PriME-Ls problem  effi-
ciently and accurately. A novel distance measure
called minMaxRadius is designed to evaluate the
probabilistic distance between the positions of a
moving object and a candidate facility. Two new
pruning rules based on minMaxRadius as well as cor-
responding optimization methods are designed to
reduce the computational complexity.

e We conduct empirical studies on real-world datasets
to demonstrate the effectiveness, efficiency, and
superiority of our proposed algorithms compared to
classical Ls techniques.

The rest of this paper is organized as follows. We give a
brief overview of related work in the next section. In
Section 3, we formally define the PRIME-Ls problem. We pres-
ent the Pivocchio algorithm in Section 4 that utilizes the

2. Other variations of R-tree and hierarchical spatial data structures
can also be applied.
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pruning rules based on minMaxRadius measure. Section 5
presents the PiNnoccHiO-vo algorithm. Experimental results
are reported in Section 6. Finally, the last section concludes
this paper. Table 1 lists a set of frequently-used notations in
this paper.

2 RELATED WORK

In this section, we discuss related efforts in location selec-
tion and moving objects data management.

2.1 Location Selection Problem

There have been increasing research efforts in Ls problem
under various scenarios [1], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19]. These efforts can be
broadly classified into two groups, namely, maximum influ-
ence-based (Max-INF) and minimum distance-based (MIN-DIST).

MAX-INF. The term influence has been widely used in lit-
erature. For instance, in social influence study, it refers to
the fact that one’s emotions, opinions, or behaviors are
affected by others. In Ls problem, influence refers to the num-
ber (resp., probability) of persons (resp., objects) that may
visit (resp., be affected) if some facility is placed at a particu-
lar location.

Specifically, Max-INF-based Ls problem aims to find a loca-
tion ¢ with the maximum influence, defined as the number
of objects whose nearest neighbor is c. Hence, MAX-INF is
closely related to BRNN, which was introduced in [2]. Xia
et al. [1] defined the influence of a location as the total
weight of its RNNs (reverse nearest neighbors) and devel-
oped a distance metric called minExistDNN to prune search
space using R-tree. In [6], the authors studied further with
existing facilities. Two pruning algorithms are exploited to
estimate the distance between a customer and its nearest
facility utilizing the concept of influential region. Sun et al.
[9] validated all clients and their corresponding BRNN sets
and proposed three pruning techniques to tighten the
search space. However, these efforts suffer from all the three
limitations mentioned in Section 1.2.

Yan et al. [12] relaxed the assumption from NN facility to
(1 + @) - NN, where « is a user-specified value. By employing
a grid-based algorithm, the approximate candidates are
mined. Wong et al. [16] studied a similar problem, called
MaxBREKNN, in which all the knN facilities exhibit influence
on objects. The authors took advantage of region-to-point
transformation to tighten the continuous search space. Zhou
etal. [17] proposed MaxFirst to solve MaxBRkNN. The solu-
tion partitions the space into quadrants iteratively and
prunes the unpromising candidates using upper and lower
bounds. Note that these studies suffer from the first two
limitations in Section 1.2.

Choi et al. [18] studied the MaxRS problem, which is
another variant of 1s. Specifically, MaxRS finds an optimal
region r with a given size, which maximizes the total weight
of all the objects covered by r. The authors proposed Exact-
MaxRS and ApproxMaxCRS algorithms to handle the cases
of rectangular and circular regions, respectively. They fur-
ther proposed (1 — ¢)-approximate MaxRS algorithm to sig-
nificantly improve its efficiency in [19]. Recently, Xu et al.
[11] proposed group location selection (GLS) problem to find
the minimum number of multiple locations with influence
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regions, such that all the objects can be covered. However,
in contrast to our problem setting, these efforts assume that
the objects are static.

Shang et al. [8] extended RNN to reverse path nearest neigh-
bor (R-PNN) in road networks. Dijkstra expansion and trian-
gle inequality are adopted to estimate lower and upper
bounds for candidates pruning. As the pruning strategies
are based on NN and the effects of other points are ignored,
it suffers from the third limitation in Section 1.2.

Cheema et al. [5] studied the problem of probabilistic
reverse nearest neighbor (PRNN) based on the possible
worlds semantics. They developed Normalized Antipodal
Half-Space to solve the PRNN on multidimensional uncer-
tain data. Following possible world semantics, Zhan
et al. [13] aims to find top-k most influential facilities
over uncertain objects. Zheng et al. [15] proposed parti-
tion-based algorithm and many pruning techniques to
solve a similar problem. Although these studies model an
object as “multiple position instances”, they focus on
uncertain data, which is inherently different from mobil-
ity data due to the cause of uncertainty [5]. Besides, in a
possible world, each object is still represented by a single
position and is limited to be influenced by only one facil-
ity based on NN metric. In contrast, in our problem set-
ting, majority of moving objects may visit multiple
locations, thus are influenced by these locations. Hence,
these approaches cannot be easily adapted to address the
PRIME-LS problem.

Yiu et al. [27] studied another kind of Ls problem, in
which they focus on the total qualities of surrounding facili-
ties of query locations. By utilizing user-specific range and
NN to restrict feature objects, they presented Branch-and-
Bound and Feature Join algorithms to solve the problem.
They further extended this problem with distance-weighted
quality [23]. The authors used Gaussian density function to
depict the decremental effect on distance. As these efforts
are orthogonal to our problem setting, they cannot be
applied to address the PRIME-LS problem.

MIN-DIST. miN-DIsT-based Ls problem finds the optimal
location to minimize the aggregate distance between loca-
tions and objects. Zhang et al. [14] proposed a method to
find the MIN-DIST optimal-location for weighted objects in a
given spatial region Q). Qi et al. [7] proposed an algorithm
to find a location for new facility so that the average dis-
tance between an object and the corresponding nearest facil-
ity is minimized. Tang et al. [10] studied a converse
problem to find k-Nearest Neighboring Trajectories (k-NNT)
with the minimum distance to a set of given points. How-
ever, these MIN-DIsT-based techniques suffer from all the
three limitations discussed in Section 1.2. Hence, they are
orthogonal to our problem setup.

2.2 Querying Moving Objects

There are a large body of work related to queries over mov-
ing objects, which are commonly represented by sampled
positions on their trajectories. NN queries over moving
objects [28] find the closest trajectory to a query trajectory or
point at a particular timestamp or in a certain interval. On
the other hand, Continuous Aggregate NN [29] aims to contin-
uously retrieve a moving object whose aggregate distance
to all facilities is the smallest. Intersection join over moving
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objects [30] finds every object pair at every timestamp,
where the corresponding MBRrs intersect. Moreover, in con-
tinuous RNN [31], both query points and objects are movable,
the aim is to find the reverse NN of a query point over time.
Continuous maximal RNN [32] is most related to Ls, which con-
tinuously finds the optimal network location at every time-
stamp based on RNN. In a sense, all these efforts can be
regarded as multiple queries over static objects at different
time instances. Hence, they cannot be adopted effectively to
address PrRIME-Ls.

3 PROBLEM DEFINITION

In this section, we formally define the PrIME-Ls problem
addressed in this paper. We begin by introducing some ter-
minology that are necessary for the definition of the
problem.

3.1 Terminology

A position p is a point in a two-dimensional Euclidian space,
denoted by its geographical coordinates (i.e., latitude and
longitude). Given any two positions p; and p,, the distance
between them is denoted by dist(p1, p2). A moving object can
be described either discretely or continuously. In the discrete
case, the raw positions of a moving object are typically
expressed as (latitude, longitude). In the latter case, any con-
tinuous moving object also can be discretized as a series of
positions by sampling using the same time interval.® In this
paper, we use a set of discrete positions O = {p1,pa, ...,p,} to
denote a moving object O.* Moreover, we model each moving
object O by an MBR [26], which encloses all its positions to rep-
resent her activity region and is denoted by MBR(O).

We denote candidate locations of a new facility to deploy
as C' = {¢,¢,...,cn}. The probability that an object at posi-
tion p is influenced by a facility at location ¢ € C is denoted
by Pr.(p). We use a pre-defined distance-based probability
function PF' to depict the behavior pattern of influence.
Since the probability of a customer for a point-of-interest is
inversely proportional to geographic distance [21], as
remarked earlier (Section 1.1), we assume PF' is monotoni-
cally decreasing to distance and the influence probability
only depends on the distance between a facility and an
object. That is, the influence probability Pr.(p) can be com-
puted as Pr.p) = PF(dist(c,p)). For a moving object
O = {p1,p2,...,pn}, the probability that O is influenced by
candidate ¢ at any position p; (i € [1,n]) is independent of
those at other positions, i.e., Pr.(p;) = PF(dist(c,p;)). O is
influenced by c if and only if there is at least a position p; of
O that is influenced by c. The probability that O is influ-
enced by ¢, namely cumulative probability, can be defined as
follows.

Definition 1. Given a candidate location ¢ and a moving object
O with n positions {p1,pa, ..., pn}, the cumulative influence

3. To simplify our discussion, we assume all devices exhibit the
same sampling rate.

4. Notably, for the effectiveness of problem result, we recommend a
single type of mobility dataset (i.e., either discrete or discretized contin-
uous dataset). Mixed datasets (e.g., mixing discrete check-ins with dis-
cretized trajectories) would lead to uncertain results due to the inherent
diversity between data sources.
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probability of O being influenced by c, denoted by Pr.(O), is
defined as: Pr.(0) =1 —[[/_,(1 — Prc(p:)).

Recall that in conventional s, whether a candidate loca-
tion ¢ € C influences an object O can be directly determined
by BRNN. That is, ¢ can influence O if and only if the nearest
neighbor of O in C'is c. However, this assumption may not
hold when an object consists of multiple positions (Fig. 1).
Hence, we redefine the concept of influence using Pr.(O).

Definition 2. Given a moving object O, a candidate location ¢
and a probability threshold t, ¢ influences O if and only if
Pr.(O) > t. Further, given a set of moving objects (), the
influence value of ¢, denoted as inf(c), is the number of mov-
ing objects in ) that are influenced by c.

Pr.(O) measures the extent that O is influenced by c.
Given ) = {04, 0s,...,0,} and a user-specified probability
threshold 7, we can evaluate inf(c;) (¢;€C and
je{1,...,m}) for every candidate location. The candidate
with the maximum influence can be considered as the opti-
mal location to deploy a new facility as it can influence the
most potential customers.

3.2 The PRIME-LS Problem
We are now ready to define the location selection problem
addressed in this paper.

Definition 3. Given a set of candidate locations C, a set of mov-
ing objects ), a certain distance-based probability function PF
and a user-specified influence threshold t, the PRobabilistic
Influence-based Mobility-awarE Location Selection (PRIME-LS)
problem aims to mine the optimal candidate ¢ € C such that
Ve € C —{c},inf(c) > inf(c).

Example 1. Reconsider Fig. 1 with moving objects O1, O,
and candidates c;, ¢;. Assume the independent influence
probabilities of ¢; at positions pi1, p12, p13, P14 and pi5 are
0.5, 0.1, 0.2, 0.15 and 0.12, respectively. Then Pr., (O;) =
1—(1-0.5)(1—0.1)(1—0.2)(1—0.15)(1 —0.12) = 0.73.
Similarly, since the probabilities of ¢; influencing posi-
tions P21, P22, P23, P24 and P25 are 025, 035, 033, 0.3 and
0.38, respectively, Pr., (O2) = 0.86. If t is set to 0.8, ¢; only
influences O, but not O, which even has the NN position
p11. Hence, inf(c;)=1. On the other hand, if
Pr.,(01) =0.86 and Pr.(O2) =0.83, then ¢, obviously
influences both O; and O,. That is, inf(cy) =2. As
inf(ca) > inf(cr), ca is the selected location for PRIME-LS
problem.

As remarked earlier, a naive strategy to address the
PrivE-Ls problem is to exhaustively test all the object and
candidate pairs. Unfortunately, it is computationally expen-
sive (see Section 6). In the next section, we present a more
efficient algorithm called PinoccHiO to address this problem.

4 INFLUENCE-BASED LOCATION SELECTION

Intuitively, our Pinocchio algorithm comprises of two key
phases, namely, pruning and validation. In the pruning phase,
we propose a novel pruning strategy to filter out inferior
candidate locations. In the validation phase, we validate the
remaining candidates to select the final result.
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As discussed in Section 2, existing Ls efforts, which
are based on static objects, solve inherently different
problems from mobility-based PriME-Ls. Consequently,
the widely-used NN-based pruning techniques cannot be
applied here. Hence, a new pruning strategy is para-
mount for efficiently solving the PriME-Ls problem. In
this section, we first design a novel measure called min-
MaxRadius to quantify the cumulative influence that a
candidate location exhibits on a moving object with mul-
tiple positions. Based on that, we then design two prun-
ing rules, namely influence arcs rule and mnon-influence
boundary rule. The former utilizes minMaxRadius to deter-
mine a small area for each moving object such that any
candidate location falling into the area definitely influen-
ces that object. The latter utilizes minMaxRadius to find a
relatively larger area for each moving object such that
any candidate outside the area definitely fails to influ-
ence that object. These rules enable us to avoid the com-
putation and validation of cumulative influence for
many object-candidate pairs. Finally, we present the
PiNnoccHIO algorithm to solve the PriME-Ls problem.

4.1 minMaxRadius

In this section, we introduce the novel minMaxRadius mea-
sure as follows. First, we present a lemma on the condition
a candidate location ¢ must satisfy to influence a moving
object considering only one of its positions. Afterwards, we
define a probabilistic model for the remaining positions. We
then deduce the measure with regards to two positions of
an object. Finally, the measure distance is derived by
extending it to all positions.

Lemma 1. Given a moving object O = {p,} (with only one posi-
tion), a candidate location c and probability threshold t, ¢ can
influence O if and only if dist(c,p;) < PF~*(7).

Proof. As O ={pi}, Pr.(O)=1—(1—Pr.(p1)) = Pr.(p) =
PF(dist(c,p1)). As discussed before, PF' is monotonically
decreasing with respect to the distance. That is, Pr.(p1) =
PF(dist(c,p1)) > PF(PF~'(t)) = . Hence, based on Defi-
nition 2, ¢ can influence O. O

Definition 4. Given a candidate location ¢ and a moving object
O with positions {p,...,pn}, which are ordered by distance
from ¢, the partial non-influence probability of O to be not
influenced by c, denoted by Pr"~"(O), is computed as
P (0) =TT (1 = Pr(p;)), where n' € N, n' < n.

Note that as there is no item in Prl!="(O), we set it as 1.

We now consider other positions of O. Let Pr"~'(O) be
the partial non-influence probability of positions except p;.
Assuming moving object O is influenced by candidate c,
then Pr.(O) should be no less than . Thus,

%

1= (1= Pr(pr)) - Pry1(0) 4

17
Lot

Pr. >
®) = 1 Eo)

Let 7,1 =1—(1—1)/P"1(0), then the inequality
above can be rewritten as Pr.(p1) > t,-1. Hence, the rela-
tionship between Pr.(O) and t can be regarded as that
between Pr.(p;) and 7,,_;.
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As shown in Fig. 2a, there exists a distance d) such that
PF(dy) equals to t,_1. As t > 7,_; can be easily derived
from the definition of 7, ;, then d| > d; = PF (). As
shown in Fig. 2b, if and only if position p; of O lies in a circle
that centers at ¢ with radius d;, Pr.(O) > t. Thus, ¢ influen-
ces O. Here, d; will decrease when Pr"~'(0O) increases. If
Pri=1(0) is close to 1, d is close to d;. It implies that the far-
ther a position is away from a candidate, the less it will con-
tribute to the cumulative influence probability.

Now let us consider two positions p; and p» of O, where
dist(c,p1) < dist(c,p2). Ignoring {ps,...,p,}, suppose c
influences O. Then 1 — (1 — Pr.(p;))?, which is the lower
bound of Pr.(0), is greater than 7, namely Pr.(ps) >

1
1—(1-1)2. We take {ps,...,p,} into consideration again.
Similar to the situation of one position, there exists a dis-

tance d, such thatdy, > dy = PF~'(1 — (1 — r)%) > dy. Thus,
if and only if p; and p; of O lie in a circle that centers at ¢
with radius d}, ¢ influences O.

If we extend the situation to all n positions of O, i.e,
Pr="(0) = 1, the distance d], equals to d,. This leads to the
definition of the minMaxRadius measure.

Definition 5. Given a moving object O with n positions and a
probability function PF, the minMaxRadius of O based on a
user-specified  probability  threshold T, is defined as:

minMaz Radius(t,n) = PF~1(1 — (1 — 1;)%)'

In the above definition, the term min indicates that it is
the shortest radius and the term Max signifies the farthest
distance between all positions and the center c. Notice that
if n is fixed, minMax Radius(t,n) grows when t decreases;
if 7 is fixed, minMax Radius(t,n) grows as n increases.

Theorem 1. Given a moving object O = {p1,...,p,}, if all n
positions lie in a circle that centers at candidate location c with
radius minMax Radius(t,n), ¢ must influence O with a prob-
ability of at least t.

Proof. As {dist(c,p1),...,dist(c,p,)} are sorted in ascend-
ing order, Pr.(p)) = PF(dist(c,p1)) > ... > Prc(p,)
PF(dist(c,py)). Obviously, 1 — (1 — Pr.(P,))" < Pr.(0)
1— (1= Pro(P)". If dist(c, p,) < minMaxRadius(t,n)
PF'(1— (1 —1)%), Pre(py) > 1 — (1 — 7)7. Hence, 1 — (1—
Pr.(P,))" > . As aresult, Pr.(O) > 7. That is, ¢ can influ-
ence O whose positions lie in a circle that centers at ¢ with
radius minMazx Radius(t,n). O

Al

Theorem 2. Given a moving object O = {p1,...,p,} and a
threshold t, if all n positions lie outside a circle that centers
at candidate location ¢ with radius minMaxRadius(t,n), ¢
must not influence O.
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Fig. 3. Influence arcs pruning rule.

Proof. Similar to the Theorem 1, if

dist(c,p1) > minMaxRadius(t,n) = PF~1(1 — (1 — r)%),
Pro(p) < 1—(1— )" Hence, 1 — (1 — Pr.(P))" < . As
a result, Pr.(O) < 7. That is, ¢ cannot influence O whose

positions lie outside a circle that centers at ¢ with radius
minMazRadius(t,n). O

proof of

4.2 Pruning Rules

Based on Definition 5, given a certain t, minMaxRadius
varies with n. Let N denote the number of different n for all
objects. For each candidate ¢, N range queries are required
in order to determine using minMaxRadius whether these
objects are influenced or not by c. However, N is large in
reality [22]. Processing so many range queries for a large
number of candidates is impractical, which motivates us to
design two minMaxRadius-based pruning rules to reduce
the number of candidates based on each moving object.

In this paper, we use two geometry metrics, minDist and
maxDist [33], to indicate the lower and upper bounds of the
distance between a candidate location and any possible
position in a moving object.

4.2.1 Influence Arcs Pruning Rule

According to Theorem 1, if the farthest distance between
all n positions and ¢ is not larger than minMaxRadius, a
moving object O can be influenced by candidate location c.
However, we cannot predetermine the farthest distance as
both range query and scan on all n positions are costly.
Hence, to avoid probing the exact farthest distance bet-
ween all positions and ¢, we employ maxDist to obtain an
upper bound on the distance. We adopt Cartesian coordi-
nate’ to facilitate the discussion in the sequel.

Definition 6. Given a probability threshold t and the MBR(O)
of O with n positions, let the center of MBR(O) be the origin
of Cartesian coordinate, where two axes are parallel with the
sides of MBR(O). For any corner of MBR(O), draw an arc
centering at the corner with radius minMax Radius(t,n), and
the arc between two intersection points with the axes in the
opposite direction of the corner is defined as an influence arc.

For instance, pq, py, pc, pq in Fig. 3 are the corners and p, is
the center of MBR(O). Let p, be the origin. Through p,, let
X-axis and Y-axis parallel with segments p,p; and D.ps,
respectively. The two axes are the perpendicular bisectors

5.In this paper, the distance is actually computed based on Geo-
graphic spherical distance.
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Fig. 4. Non-influence boundary pruning rule.

of MBR(O), which divide the plane into four quadrants,

N
L ..., 1v. With endpoints A and N on both axes, arc MNis
the influence arc of corner p., where the lengths of segments
Mp. and Np. are therefore minMax Radius(z,n).

Lemma 2 (Influence Arcs Pruning Rule). Any candidate
location lying in the closed region bounded by the four influence
arcs of the corners of MBR(O) can influence O.

Proof: As shown in Fig. 3, Y intersects pyp, at py., the mid
point of pyp.. Hence, triangles AMpy.p, and AMpy.p. are
congruent, and Mp, = Mp. = minMaz Radius(t,n). That
is, M is an endpoint of the influence arc of corner p;,. Simi-
larly, X intersects p.pg at p.q, the mid point of p.pg. Thus,
N is an endpoint of the influence arc of corner p,. Like-
wise, adjacent points M, N, P,() are pairwise the end-
points of influence arcs. Hence, the region bounded by

NN N
influence arcs MN, NQ QQ Pand PMis closed.

On the other hand, as the maxDist point of an MBR
from any point p is defined as the farthest corner of the
MBR away from p. As shown in Fig. 3, for a candidate
inside any quadrant, its maxDist point is the corner of
MBR(O) in the diagonal quadrant. Suppose c is in quad-
rant 1, the maa Dist point is corner p,. If ¢ lies in the region

bounded by Mp,, Np, and influence arc ]\7]\\6 namely the
shaded region in Fig. 3, the maxDist between any posi-
tion of O and c is no farther than minMaxRadius(t,n).
That is, ¢ can influence O. Candidates in other quadrants
exhibit the same property. ]

4.2.2 Non-Influence Boundary Pruning Rule

By means of influence arcs, we can prune the candidates
which influence a moving object definitively. We now dis-
cuss another rule that can prune candidates that cannot
influence a moving object.

Definition 7. Given a probability threshold t and the MBR(O)
of a moving object O with n positions, draw quarter circle arcs
centering at each corner of MBR(O) with radius
minMax Radius(t,n). For each arc, it intersects the extension
lines of the adjacent sides of the corresponding corner. The
closed curve formed by connecting the endpoints of adjacent
arcs with line segments is defined as the non-influence bound-
ary of moving object O.

In Fig. 4, p,,...,pq are the corners of MBR(O). Draw
the quarter circle arc centering at p, with radius
minMazxRadius(t,n), intersecting the extension lines of p;p,

VY N\ N
and pgp, at N and P. Similarly, draw QR, ST and UM cen-
tering at py,p. and pg with radius minMazxRadius(t,n),
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respectively. Connect P and @), R and S, T"and U, M and
N pairwise, the non-influence boundary of MBR(O) is
formed.

Lemma 3 (Non-Influence Boundary Pruning Rule). Any
candidate location that lies out of the region bounded by non-
influence boundary of MBR(O) cannot influence O.

Proof. According to Definition 7, except MBR(O), all the
extension lines divide the space into areas 1 to v, as
shown in Fig. 4. Based on the minDist definition, for any
candidate in areas 1, m, v, vI, its minDist point is the corre-
sponding corner of the quarter circle arc (e.g., c; and cor-
ner p,). In addition, for any candidate in areas 1, v, v1, v,
the minDist point is the perpendicular point of the candi-
date on the side of MBR(O) in the area (e.g., ¢; and c}).
For any point on the non-influence boundary, it is
minMazRadius(t,n) the minDist between the point
and MBR(O). Hence, if a candidate ¢ locates out of
the non-influence boundary region (i.e., inside the
shaded region in Fig. 4), its minDist is farther than
minMazRadius(t,n). According to Theorem 2, ¢ cannot
influence O. 0

Remark. If an MBR(O) degenerates to a point (i.e., a mov-
ing object can be represented by a single position), the
minMaxRadius degenerates to maxDist or minDist.
Hence, PrivE-Ls degenerates to the conventional Ls
problem.

4.3 The PinoccHio Algorithm

We now present algorithm PiNoccHIO to solve PrIME-Ls by
leveraging the aforementioned pruning rules. The key idea
is as follows. For each moving object, we first calculate its
minMax Radius, based on which the corresponding influ-
ence arcs (1) and non-influence boundary (niB) can be
obtained. With the help of 14, we identify and find the candi-
dates that influence the object. For the remnant candidates,
NIB is used to exclude the candidates that cannot influence
the object. Lastly, the remnant candidates are verified using
Definition 2.

Algorithm 1. Moving Objects 2D Array Initialization.

Input: moving objects set Q= {0,...,0,}, each object
Or={p1,...,pn.} (k€ [l,7r]), PFand t
Output: the moving object 2D array Asp
1 HM =0, Asp = 0;
2 foreach O, € Q) do
if key ny. is found in HM then
retrieve minMax Radius(t, ny);

compute minMaz Radius(t, ni);
insert pair (ny, minMazRadius(t,ny)) to HM;
initialize A1p(Oy) = {p1,-..,Pn, };
9  compute IA(O;) and NIB(O;,) based on MBR(Oy);
10  insert tuple (A,p(Oy), IA(Oy), NIB(Oy)) to Asp;
11 returnAsp;

3
4
5 else
6
7
8

Recall that moving objects” activity areas highly overlap
with each other. For instance, in our experimental datasets a
moving object covers nearly 55 percent of each dimension
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Fig. 5. An example.

(the entire longitude and latitude cover 39.22 and 27.03 km,
and on average each object covers 22.51 and 14.99 km,
respectively). Moreover, we have to consider the cumula-
tive influence probability of all positions of each object. Sup-
pose we index the MBRs of moving objects” activity areas
using an R-tree. Then in all tree levels the MBrs of intermedi-
ate nodes will also overlap significantly, which means the
group-wise strategy is unavailable, and nearly every leaf
still needs to be explored. This prevents us from applying
such hierarchical data structures (e.g., R-tree-like or grid-
like) as they fail to guarantee efficiency, besides extra con-
struction time. Therefore, we present a moving object two-
dimensional (2D) array, denoted by Asp, for better
performance.

Asp contains multiple one-dimensional (1D) arrays,
denoted as A;p, to store positions of each object. As each
object may have different number of positions, the 1D
arrays are of different lengths. Given threshold r and
probability function PF, minMaxRadius(t,n) of objects
are different as well. Hence, to reduce the computation
of each minMaxRadius, we store the values in a Hash-
Map HM with n as keys. For pruning, each item of A;p
is associated with the corresponding 1o and NiB data.
Algorithm 1 outlines the procedure for initializing this
Asp. Note that we compute the influence arcs IA(Oy)
and the non-influence boundary NIB(O;) based on both
MBR(Oy) and minMaxRadius(t,n) (Line 9). A tuple
(A1p(Oy), IA(Oy), NIB(Oy)) for Oy is built and inserted
into Ayp with its ID Oy.id (Line 10). Inspired by [7], we
use the MBR of NIB (i.e., a simple rectangle to approximate
NIB) to prune candidates in a more efficient way.

On the other hand, an R-tree is created to manage candi-
date locations to improve efficiency. Each leaf node of
the R-tree contains the influence of the corresponding
candidate.

Algorithm 2 outlines the PmocchiO algorithm. First,
we initialize Asp using Algorithm 1 (Line 1). We create
an R-tree for the candidate locations, and initialize the
influence inf(c;) of each candidate ¢; (Lines 2-3). Next,
for each object tuple in Ayp, we first utilize Lemma 2 to
retrieve ¢’ C C' candidates by the range query of IA(Oy)
on C R-tree. Each candidate in C’ influences O, and
thus its inf(c;) is increased (Lines 5-8). Similarly, C” can-
didates, each of which is inside NIB(O;) but not in
TA(Oy), are retrieved using Lemma 3. As a result, C” is
the set of remnant candidates which needs to be verified
(Line 9). In the validation phase, for each ¢; € C", we
perform a sequential scan over all positions in Oy, (Lines
10-15) and finally return the candidate with the maxi-
mum influence.

(b) Moving Object 2D Array

(c) Pruning with /A(O,) & NIB(O;)

Algorithm 2. The PinoccHio Algorithm

Input: moving objects set Q ={04,...,0,}, each object
Or=A{p1,--.,pn,} (k€ [L,7]), candidate locations set
C=A{cy,...,epn}, PFand t

Output: the candidate location with maximum influence

1 initialize Ayp with ), PF and t;
2 initialize C' R-tree;
3 foreach c; leaf node in C' R-tree do

initialize inf(c;) = 0;
foreach A p(Oy) € Ayp do

retrieve C' C C'in TA(Oy);

foreach ¢; € ¢’ do

increase inf(c;) by 1;
9 retrieve C” C Cinside NIB(Oy,) but not in IA(Oy,);

10  foreach ¢; € C" do

N O U1

11 foreach p; € O, do

12 Pre;(pi) = PF(dist(cj, pi));

13 compute Pr. (Or) =1 —[% (1 = Pre,(pi));
14 if Pr;(Oy) > v then

15 increase inf(c;) by 1;

16 return c; with the maximum in f(c;);

Example 2. Consider Fig. 5a with objects O;, O, and candi-
dates ¢; to c¢j9. We create an A,p to store all objects, each
of which consists of a 1D array of positions with 1A and
NiB information. In Fig. 5b, the 1D array lengths of O; and
O, are the same but differ from O, or O;.. Take O; as an
example in Fig. 5¢c. Using IA(O;) and NIB(O,), we iden-
tlfy that Co,C3 influence 01 but Cs, C7,Cg, Cg do not. The
remnant candidates ¢y, ¢y, ¢g, ¢19p need further validation.

Theorem 3. The time complexity of Algorithm 2 is O(m/nr),
where m’ is the number of candidates after pruning.

Proof. As there are r different A;p(O;) within A,p(Oy), the
number of iterations at line 5 is r in the worst case. As
there are m’ candidates left in C”, the number of iterations
at line 10 is m’/. Moreover, there are n different positions
for each object, thus the number of iterations at line 11
is n. As a result, the time complexity of Algorithm 2 is
O(m/nr). 0

Remark PiNoccHIO aims to largely reduce the number of
candidate locations, denoted as m, using the pruning
rules. By reducing m, the cru cost decreases significantly
as rn is huge. Let the width and height of MBR(O) be w
and h, and those of MBR(C) for all candidates be dw and
8h, respectively. Let i denote minMaxRadius for brevity.
Assume § > 1 and candidates are uniformly distributed.
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Based on the pruning rules, the area S; enclosed by
the influence arcs is computed as S; =4(%Lx-pu>—

360
%(;psina—%tanﬂ)—%(u-cosﬁ—w—&—%)). The
area Sy enclosed by non-influence boundary can be com-
puted as Sy =7 -u?+wh+ 2(w+ h)u. Therefore, the
total number of candidates that need to be verified is
m. When § > 1, m’ < m. As u decreases, the
candidates pruned by influence arcs reduces, while the
effect of the non-influence boundary pruning is
enhanced. As we shall see in Section 6, § is much larger
than 1 in reality. Therefore, m'rn < mrn.

5 OPTIMIZING THE VALIDATION PHASE

Note that the validation phase in Algorithm 2 performs a
sequential scan on all the remnant candidates to find the
final result. In this section, we optimize this phase by devis-
ing two strategies that enable us to ignore certain candidates
during validation.

5.1 Optimization Strategies

Our first strategy leverages the upper and lower bounds of
influence. Let mazInf(c) be the maximum of the possible
influence of candidate ¢ and mininf(c) be the identified
influence of ¢. We also denote maxminInf = max.ccmin
Inf(c). Initially, mazInf(c) and minInf(c) are assigned to
|2 and 0, respectively. For each moving object, mazInf(c)
(resp., minInf(c)) may decrease (resp., increase) during
pruning and validation. Intuitively, during the validation
phase, it is possible that for some c€ C we may find
mazInf(c) < mazxminInf. That is, 3¢ € C' such that
minInf(d) = maxzminInf, and the identified influence of ¢
is larger than the maximum influence of c. Therefore, we do
not need to validate the influence of c any more as it is dom-
inated by ¢'.

Strategy 1 (Upper and Lower Bounds of Influence). If
mazxInf(c) < maxmininf, then candidate c¢ cannot influ-
ence the largest number of moving objects. Hence, ¢ can be
pruned and no further validation is needed. Consequently,
maxmininf is initialized to 0 and updated as the algorithm
executes.

On the other hand, note that if a candidate is not pruned
by Strategy 1, we have to compute the exact cumulative
influence probability. In this case, Definition 4 can be used
to stop validation early based on the following lemma.

Lemma 4. Given a candidate c, moving object O with n positions

and t, if In' < n such that partial non-influence probability
Pr="(0) < 1 — 1, then ¢ can influence O.

Proof. With Pr"~"(0), Pr.O) can be rewritten as
Pre(0) =1 —IIL(1 = Pre(p)) - Pri="(0). As Pri"(0)
<1-1, and [[",(1— Pro(p))€0,1], then [[",(1—
Pro(p)) - Pr="(0) < Pr="(0) < 1 — 7. Hence, Pr.(0) >
7. That is, ¢ influence O. O

Strategy 2 (Early Stopping Strategy). Once Lemma 4 is satis-
fied, the validation of a moving object is accomplished by com-
puting only independent influence probabilities for n' positions
of O instead of all the n positions.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO. 11,

NOVEMBER 2016

Algorithm 3. The PvoccHio-vo Algorithm

Input: moving objects set Q ={04,...,0,}, each object
Or=A{p1,-..,pn,} (k€ [L,7]), candidate locations set
C=A{cy,...,enn}, PFand t

Output: the candidate location with maximum influence

1 initialize Ayp with ), PF and t;

2 initialize C' R-tree;

3 foreach c; leaf node in C' R-tree do

4 initialize maxInf(c;) = r, mininf(c;) = 0;

5 initialize global maxzminInf = 0;

6 foreach A,p(Oy) € Ayp do

7 retrieve Cpy CC in ITA(O;) and Cpy;p C C outside

NIB(Oy);
8 increase mininf(c;) by 1 where ¢; € Cpg4;
9 decrease maxInf(c;) by 1 where ¢; € Cyyp;

10 retrieve C' C C in NIB(O},) but not in TA(Oy);
11 foreach ¢; € C' do
12 insert Oy.id into VS(c;);

13 initialize H from C ordered by maxInf and minInf;
14 while H # () do

15 ¢; =Top(H);

16 if maxInf(c;) < maxmininf then

17 break;

18  foreach O, € VS(c;) do

19 foreach p; € A1p(Oy) do

20 Pre, (pi)/: PF(dist(cj,pi));

21 if Pr=" (O;) < 1 — tthen

22 increase mininf(c;) by 1;

23 continue for next object (goto Line 18);
24 decrease maxInf(c;) by 1;

25 if maxInf(c;) < mazmininf then

26 break;

27  update global mazmininf;

28  Pop(H);

29 return c; whose minInf(c;) = maxmininf;

5.2 The PinoccHio-vo Algorithm

We now extend the PinoccHiO algorithm by incorporating
the aforementioned optimization strategies during the
validation phase. We refer to this enhanced algorithm as
PinoccHIO-vO, as shown in Algorithm 3. After constructing
Asp, it initializes the upper bound maxzInf(c;) and lower
bound minlinf(c;) of each ¢; node in C' R-tree (Lines 1-4).
The global maxmininf is also initialized (Line 5). Unlike
Algorithm 2, the pruning phase is realized independently
from the validation phase. It increases minlnf(c;) for
each candidate in Cr4, and decrease maxzInf(c;), if ¢; is
outside NIB(Oy) (Lines 7-9). Additionally, it records the
object Oy, which needs to be further verified with respect
to each ¢; € (', into the Verification Set of ¢;, denoted by
VS(¢j) (Lines 10-12). In order to efficiently benefit from
Strategy 1, we create a Max Heap H to organize C
ordered first by maxInf and second by minInf (Line 13).
In the validation phase, it iteratively checks the upper
bound of the top candidate ¢; in H. If mazInf(c;) <
maxmininf, validation is finished by Strategy 1 (Lines
15-17). Otherwise, objects in VS(c;) are verified by
Strategy 2. The influence probability of every position in
O, and the latest partial non-influence probability are
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TABLE 2
Description of Real-World Datasets
Foursquare(F) Gowalla(G)
user count 2,321 10,162
venue count 5,594 24,081
check-ins 167,231 381,165
avg. check-ins 72 37
min check-ins 3 2
max check-ins 661 780

computed iteratively. Once Lemma 4 satisfies, mininf(c;)
increases by 1 and the next object is probed (Lines 19-23).
Note that in Line 21, if n' =n, P~ (0;) = 1, therefore
the inequality never holds (Definition 4). In this case, it
replaces the checking of P~ (0;) < 1— 1t with that of
Pr.(Oy) > t. If it is verified that ¢; cannot influence Oy,
maxinf(c;) decreases by 1. After that, if maxinf(c;) <
maxmininf, ¢; must not be the optimal one (Lines 24-26).
Before probing the next top candidate, mazmininf is
updated accordingly (Lines 27-28). The candidate whose
lower bound of influence equals to mazmininf is
returned as the result.

Theorem 4. The time complexity of Algorithm 3 is O(m"n'r"),
where m” (resp., r") is the number of candidates (resp., objects)
to be validated after applying pruning rules and Strategy 1, n/
is the number of positions that has to be used for influence com-
putation after applying Strategy 2.

Proof. As discussed in Theorem 3, m' candidates needs to
be verified. In other words, there are ' = ’;}—/ r objects to be
verified in H iteration. Moreover, " can be further
reduced to r” due to Lines 25 and 26 in Algorithm 3.

For candidates, the best case occurs when the top can-
didate in H is the optimal one, thus m” = 1. In the worst
case, if pruning has no effect (which is almost impossi-
ble), all candidates need to be scanned, i.e., m"” = m. Nor-
mally, assuming the actual maximum influence is M and
the (m” + 1)th candidate in H has its mazInf < M
exactly, then only m"” candidates need to be checked. As
pruning effect is significant (detailed in Section 6.2),
m/"r" < mr.

Moreover, due to Strategy 2, it is not necessary to vali-
date all positions of an object, which means 7 is reduced

ton' (" < n). As a result, the complexity is O(m”n'r"). O

6 PERFORMANCE STUDY

We now investigate the performance of our proposed PRIME-
Ls framework over real-world datasets from a variety of
aspects.

6.1 Experimental Setup

Datasets. Table 2 describes the two real-world datasets
we use in the experiments. Both contain user check-in
data of LBs and are available from [22]. We adopt check-
in data here for two reasons: 1) The effectiveness can be
verified by check-in ground-truth, which is the actual
number of visitors for each POI; 2) The probability mod-
els of check-in with respect to distance have been justi-
fied [21], [22]. The positions of check-ins in Foursquare
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Fig. 6. Geographical distributions of data samples.

(abbr., F) are all located in Singapore, while those in
Gowalla (abbr., G) are mainly in California. As the num-
ber of check-ins varies widely, the distribution of the
numbers of positions in moving objects is skewed. More-
over, the geographical distribution of positions is also
skewed as shown in Fig. 6a (check-ins in F). We choose
200, 400, 600, 800 and 1,000 positions from check-in coor-
dinates as candidate locations by random uniform sam-
pling. Fig. 6b shows the case of 600 candidates.
Algorithms. Following algorithms are tested in the experi-
ments. They are implemented in C++, run on a 1.8 GHz
machine with 4 GB RAM under Windows 8.1 (64 bit).

e Na: A baseline method that exhaustively computes
the cumulative influence probabilities for all pairs of
candidate location and moving object, based on
which we retrieve the most influential candidate.

e BRNN*: We run MaxOverlap algorithm [16] to select
for each object a location that influences the most
positions. Finally, we return the location which has
been selected by most objects.

e RANGE: We design a baseline where an object is influ-
enced if at least a certain proportion of its positions
lie within a given range of a candidate.

PIN: PINoccHIo algorithm described in Algorithm 2.
PIN-VO: PINOccHIO-vO algorithm described in Algo-
rithm 3. The R-tree for candidates is loaded in main
memory. The maximum number of elements in each
R-tree node is 8.

e PIN-vO*: A variant of PINoccHIO-vO algorithm without
the pruning phase (using only validation optimiza-
tion strategies).

Parameter Settings. As stated in [21], the probability of a

user checking-in at a point-of-interest decays as the
power-law of the distance between them. That is,

Pr.(p) = p(dy + dist(c,p)) " where p is a factor to describe
behavior pattern and d, is a distance factor, which is set to
1.0 (All parameters in this function are selected based on
the empirical findings in [21].). We employ this model as
the pre-defined probability function PF. As illustrated in
Fig. 7a, we set p=0.9, which means the independent
influence probability is 0.9 if the distance between p and ¢
is zero. In other words, p indicates the maximum influ-
ence probability between p and c. Additionally, A is set to
0.75, 1.0 and 1.25 to change the downtrends, respectively.
p is set to 0.5, 0.7 and 0.9. We vary probability thresholds
7 to 0.1, 0.3, 0.5, 0.7 and 0.9. Unless specified otherwise,
the default values of the number of candidates, probabil-
ity threshold t, behavior factor p, and power-law factor A
are 600, 0.7, 0.9, and 1.0, respectively.
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6.2 Experimental Results

Comparison between Different Semantics. As discussed in Sec-
tion 2, there are two primary semantics of influence in exist-
ing Ls studies, namely NN-based and range-based. In this set
of experiments, we investigate the performance of the opti-
mal locations that are mined under Prive-Ls and these Ls
semantics. For NN semantics, since existing NN-based Ls solu-
tions are not designed for mobile scenario, we extend a
state-of-the-art technique MaxsrNN [16] in order to apply it
in such scenario. Specifically, we run MaxOverlap algo-
rithm [16] to select for each object O the best location c,
which influences the most positions in O. Afterwards, we
choose the location that has been selected by the most
objects. For range semantics, we design a baseline RANGE
with a simple definition of influence, where an object is
deemed to be influenced if at least some proportion of its
positions lie within a given range of a candidate. We vary
the proportions of positions among 25, 50 and 75 percent as
the minimum proportion thresholds. In light of [27], we fol-
low its default range setting, namely 5%o of the complete
scale (e.g., 0.2 km for Foursquare) as the default range, and
set half and twice of it as the lower and upper range bounds,
respectively. Hence, there are nine parameter combinations
in total, and we use the average value of the combinations
for comparison.

We employ two measures, namely Precision@K® (abbr.,
PQK) and Average Precision@K (abbr., APQK), to compare
the effectiveness of the solutions. We treat the actual check-
in logs at candidate locations, which have been assumed
unknown in our framework, as the ground-truth. We rank
Top-K (K =10,...,50) of 200 candidates as the relevant
locations according to their actual numbers of check-ins.
The Top-K results of PRIME-Ls, BRNN* and RANGE are regarded
as recommended locations. We randomly choose 50
different groups of candidates, and compute the mean val-
ues for comparison. Tables 3 and 4 report the PQK and
APQK of these approaches for Foursquare, where both val-
ues increase as K grows. Since the experiment results on
Gowalla are qualitatively similar, due to space constraint,
we do not report them in detail. Observe that on average,
PriME-Ls is significantly better than BrnN* with 20 (PQK)-35
(APQK) percent improvement, indicating that other posi-
tions also play a role besides the nearest neighbor. Also,
PriME-Ls is around 8 (PQK)-12 (APQK) percent better than
RANGE on average. Despite the ideas of NN and RANGE are
simpler than PriME-Ls, their relatively poor performances

6. As we use K for both relevant and recommended locations,
Recall@K has the same value as Precision@K.

may result in negative impacts (e.g., customer loss, eco-
nomic loss, etc.) that cannot be ignored in practical location
selection. Hence, PRIME-Ls solution outperforms classical Ls
semantics in mobile scenarios, and we focus on PRIME-LS in
the subsequent discussions.

Comparison of NA, PIN, PIN-VO and PIN-VO*. We first
study the scalability of these algorithms. Fig. 8 reports the
running time varying the number of candidates. Clearly,
the cost increases when the number of candidates grows.
Compared to Na, PIN-vO has the best scalability, which sig-
nificantly reduces the time by orders of magnitude. PIN is
slightly better than PIN-vO*, which means the efficiencies of
pruning rules and optimization strategies are close, if they
are applied independently. Based on PIN, the efficiency of
PIN-VO is improved due to the optimization strategies by
around 60 (in F)-85 (in G) percent, which means Strategy 1
significantly benefits from the tightened upper-lower
bounds by pruning, and Strategy 2 further reduces the num-
ber of positions to be verified. Observe that PIN-vO, PIN and
PIN-vO* (especially the latter two) are more efficient in F'
than in G. The reason is twofold. First, the gap between
upper and lower bounds in F' is narrower than in G, which
leads to lesser objects to be verified when iterating through
each candidate in H. Second, as objects in /' have more posi-
tions than in G, Strategy 2 is more efficient. Fig. 9 plots the
scalability from 2k to 10k objects chosen randomly from
Gowalla, with the same set of 600 candidates. The results are
qualitatively similar to Fig 8. piN-vo also demonstrates the
best scalability, followed by PIN, PIN-vO* and NA.

Next, we study the effect of pruning rules. For each mov-
ing object, the area enclosed by 14 and excluded by NiB deter-
mines the number of candidates that can be pruned. As
shown in Fig. 10, nearly 2/3 candidates are pruned on aver-
age. As t increases (i.e., minMaxRadius declines based on
Definition 5), the number of candidates inside 1A decreases,
while the number outside NB grows. Observe that for F
(resp., G) the candidates pruned by 1A (resp., NIB) are much
more than those by NiB (resp., 1a). This is because the candi-
dates are scattered wider in F' than in G with respect to the
activity region of an object. Another interesting phenome-
non is that the number of pruned candidates in F' changes
more significantly than in ¢ when t changes. The reason is
twofold. First, compared to minMaxRadius, the size of activ-
ity region of each object is relatively close (resp., much

TABLE 4
Average Precision Comparison
Avg. Precision @10 @20 @30 @40 @50
PRIME-LS 0.022 0.032 0.055 0.081 0.110
Avg. RANGE 0.020 0.031 0.050 0.071 0.092
BRNN* 0.015 0.028 0.040 0.056 0.085
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larger) in F' (resp., G), which means it is more (resp., less)
sensitive to minMaxRadius. Second, objects have more (resp.,
less) positions in F' (resp., G), which leads to more (resp.,
less) sensitivity to 7. As PIN-vO is superior to PIN and PIN-vO¥,
we only use Na and PIN-vO to study the impact of various
parameters in subsequent experiments.

Effect of n. In this part, we test the effect of n over the
algorithms. We divide objects in Gowalla into five groups
according to their numbers of positions, as shown in
Table 5.

Fig. 11a reports that pIN-vO has similar improvement in
performance for different n with respect to Na. As minMax-
Radius increases with n, less candidates are pruned by Nis,
which results in larger maxzInf. Then it is likely that more
objects need to be verified by Strategy 1, which offsets the
benefit brought in by Strategy 2. If n is greater than 70, the
maximum influence is the closest to the total, which is more
than 60 percent. In contrast, the group with the least posi-
tions ranks the last, where the maximum influence is only
20 percent of the total. This means any object with more
positions has higher probability being attracted by candi-
dates. Furthermore, the average distance between the five
resulting optimal locations over different groups is only
0.22 km, where two results are identical and the maximum
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Five Groups
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Fig. 11. Effect of n.

distance is 0.69 km. Hence, compared with the average dis-
tance between candidates, which is a few kilometers, the
distance error is less than 6 percent.

We also study the case of the same objects with different
number of positions. We first select 1,999 moving objects in
Gowalla, each of which has more than 50 positions. For each
object, we generate five different instances of it by choosing
10,...,50 positions randomly from all its positions. Then
we group all the instances into five sets, each has the same
number of positions. In Fig. 11b, the cases of performance
and maximum influence are similar to Fig. 11a. On the other
hand, the average distance between the five result locations
is 0.27 km, where two results are identical and the maxi-
mum distance is 0.78 km. Thus, the distance error is still
less than 8 percent.

Intuitively, too small » may not describe mobility pattern
and too large n causes expensive overhead. Therefore, we
further investigate the reasonable range of n from two
aspects, namely accuracy and time cost. Since the mobility
patterns of both human beings and animals have periodic-
ity [20], [34], proper samplings by the same temporal inter-
val for long-term data still comply the regularity. For
example, by identifying for each person the most visited
positions within each hourly interval in a day, we can pre-
dict human mobility with around 93 percent accuracy [35].
Moreover, for different n, the precision of optimal locations
is between 92 and 94 percent as described above. Hence, 24
hourly or 48 half-hourly positions are sufficient to achieve a
satisfactory accuracy. On the other hand, although more
positions lead to better accuracy, time cost increases linearly
as n grows. To sum up, using 24-48 positions, we can
achieve a tradeoff between accuracy and cost.

Effect of . Fig. 12 reports the running time and the maxi-
mum influence varying thresholds r. The running time of
PIN-vO falls and then rises when t grows. Normally, as
increases, more positions of an object need to be verified,
which weakens the effect of Strategy 2. Moreover, influence
values of candidates decline and differ widely between
each other, which degrades Strategy 1. However, if 7 is very
small, many candidates may have similar influences, then
Strategy 1 has to verify them all and performs poor. On the
other hand, the maximum influence drops as t grows.
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Relationship between n and t. We also explore the relation-
ship between n and 7, as they both affect the maximum
influence and result locations. Together with the five sets
used in Fig. 11b, we construct four more with 15, 25, 35 and
45 positions in the same way. We first select the set with 20
positions and 7 = 0.7, based on which the maximum influ-
ence is set as the reference. Then we tune t values for other
sets until their maximum influences equal to the reference,
which means these (n,t) pairs form a level curve with
respect to the same maximum influence. In Fig. 13a, the
error of execution time between tuned and original PIN-vO is
less than 3 percent with respect to Na. It is noteworthy that
four and two of the resulting optimal locations are respec-
tively identical, and the average distance is only 0.16 km.
This indicates the error of distance between any two result-
ing locations of (n, t) pairs on the level curve is very small.
On the other hand, as shown in Fig. 13b, we fit the level
curve by Matlab’s polyfit, using the original (n, t) pairs with
10, 20, 30, 40 and 50 positions. The average error of the max-
imum influence between the fitting and original (n, t) pairs
with 15, 25, 35 and 45 positions is less than 1.2 percent. In
summary, if we expect a certain number of objects to be influ-
enced, the resulting locations are identical or very close with high
accuracy, regardless of how the parameters n, t are set.

Effect of X\. Below, we test the impact of the power-law
factor A on both the execution time and maximum influence.
As shown in Fig. 14, PIN-vo has similar running time for dif-
ferent )\, and the maximum influence grows when A\
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increases as cumulative probabilities of moving objects
drop. For objects with more positions, the maximum influ-
ence (resp., pruning and optimized validation) is less (resp.,
more) sensitive to probability changes. As a result, the effect
in Gowalla is not as significant as that in Foursquare, and the
maximum influence in Foursquare have slower rate of
decline than that in Gowalla.

Effect of p. The effect of the parameter p, which describes
behavior pattern and represents the maximum PF influence
probability, is qualitatively similar to that of A. In Fig. 15,
the performance improves as p grows. The effect in Gowalla,
where objects have less positions, is also less significant
than that in Foursquare. The maximum influence decreases
quickly when p declines. The reason is that nearer position
of a moving object contributes larger probability to the
cumulative influence probability. Compared to A on the val-
idation phase, p has lower efficiency as more validations are
required.

Effect of Different PFs. It may be possible that in some
specific scenarios, one may have to adopt PF functions. In
fact, PINoccHIO is a general framework and many other PF
functions can also be adopted without any modification.
In this part, we show the effectiveness and efficiency of
our model under different PFs. As shown in Fig. 16a, we
test four different PFs,” all of which are commonly used
functions in data mining and machine learning areas.
Logsig is a variation of the Log-sigmoid transfer function,
i.e., logsig(dist) = 1/(1 + e®*!) . p where p is set to 0.5. Con-
vex and Concave are the convex and concave parts of Log-
sig, respectively. The scales of them are normalized to the
same as that of Logsig. Linear also has the same scales.
Fig. 16b reports the effect in efficiency and maximum
influence of these four PFs. Despite slight differences, the
results demonstrate that our model can handle different
PFs.

7. To simplify the discussion and show the effectiveness more intui-
tively, these functions may not be strictly pdfs.
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7 CONCLUSIONS

In this paper, we introduce a generalized location selection
problem called Prive-Ls and provide an effective and effi-
cient solution to it. Comparing to classical Ls problem,
PrIME-Ls assumes that objects are mobile and may be influ-
enced by multiple candidate locations with different proba-
bilities. This problem has many real-world applications
such as facility allocation, urban planning, wild-life moni-
toring, location-based services, etc. We present a novel algo-
rithm called PinoccHio that exploits two pruning rules, built
on top of the minMaxRadius measure, to prune inferior can-
didate locations effectively. Additionally, PiNvoccHio-vo fur-
ther improves the performance of Pmnoccmio with two
optimization strategies that reduce the candidate validation
cost. Extensive experiments on real datasets demonstrate
the superiority of our approaches. As part of future work,
we plan to study incremental solution towards PRIME-Ls in
dynamic scenarios, where candidate locations, objects as
well as their positions keep on changing.
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