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The facility relocation (FR) problem, which aims to optimize the placement of facilities to accommodate the

changes of users’ locations, has a broad spectrum of applications. Despite the significant progress made by

existing solutions to the FR problem, they all assume each user is stationary and represented as a single point.

Unfortunately, in reality, objects (e.g., people, animals) are mobile. For example, a car-sharing user picks up

a vehicle from a station close to where he or she is currently located. Consequently, these efforts may fail

to identify a superior solution to the FR problem. In this article, for the first time, we take into account the

movement history of users and introduce a novel FR problem, called motion-fr, to address the preceding

limitation. Specifically, we present a framework called frost to address it. frost comprises two exact algo-

rithms: index based and index free. The former is designed to address the scenario when facilities and objects

are known a priori, whereas the latter solves the motion-fr problem by jettisoning this assumption. Further,

we extend the index-based algorithm to solve the general k-motion-fr problem, which aims to relocate k

inferior facilities. We devise an approximate solution due to NP-hardness of the problem. Experimental study

over both real-world and synthetic datasets demonstrates the superiority of our framework in comparison to

state-of-the-art FR techniques in efficiency and effectiveness.
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1 INTRODUCTION

The facility relocation (FR) problem aims to reallocate facilities in light of change in users’ locations.
It is useful in many applications, ranging from urban planning to marketing to logistics. For in-
stance, when a new subway line is launched, many people may resettle to different locations. As a
result, facilities may need to be reallocated. Several studies [9, 12, 16, 17, 23] have been undertaken
to solve the FR problem under the Min-dist criterion with a variety of constraints. Specifically,
given a set of usersU , existing facility locations F , and a set of new locationsC , assume that each
user is associated with a nearest facility in F . It is rational to expect that the distance between
each user and his or her nearest facility is minimized. Suppose now that we intend to replace an
arbitrary facility f ∈ F with a new location c ∈ C so that f can be relocated to a more attractive
location c . Observe that there are |F | · |C | potential choices. The Min-dist-based FR problem [16]
aims to find an optimal 〈f , c〉 pair over all of these potential choices such that the average distance
between all users and their nearest facilities is minimized.
Existing solutions to the FR problem assume that each user is stationary and is represented as a

single point. However, with increasing mobility of end users and proliferation of mobile applica-
tions, it is realistic to assume that a user (i.e., customer) is mobile and can be represented by a series
of spatial positions. For example, suppose a car-sharing company (e.g., Autolib, Car2Go) wishes to
improve customer experiences by making its vehicles more accessible to users. To this end, the
company needs to optimize the existing service network (i.e., parking and charging stations) by
relocating an “inferior” station (i.e., location) by substituting it from a collection of potential new
candidates (locations) such that the average pickup distance for users can be minimized. Naturally,
if a user is mobile, then he or she would probably pick up a car from a station close to where he
or she is currently located. Consequently, for a more effective solution, evaluation of the average
distance for the FR problem cannot be solely attributed to a single location of a user. It is impor-
tant to consider the set of locations associated with a user’smovement history to identify a suitable
new location. In addition, there exist two other limitations attributed to the assumptions in most
traditional FR techniques: the numbers of users and facilities are limited (e.g., tens of them), and
the distances between users and facilities are known in advance. For a small number of objects,
efficiency is not a critical issue; however, it cannot be ignored for massive car-sharing users. For
the latter, it is not always feasible to pre-determine the distance matrix for mobile people. It is
not difficult to comprehend that there are several other potential applications similar to the afore-
mentioned scenario. For instance, the FR problem is useful for a more efficient network of delivery
terminals for a logistics company or for branches of a franchise chain or bank to be closer to attract
more customers, and so forth.
Motivated by these scenarios, in this article we present a novel Min-dist-based FR problem,

called motion-fr (movement history–conscious facility relocation), that takes into account the
movement history of users to relocate a facility. Since the majority of users’ movements be-
tween locations in the real world are usually confined to roads, we focus on the road network
distance and assume that both facilities and users are located on a road network denoted as
G (V ,E). Additionally, as stated in Qi et al. [15, 16], in many real applications, companies can
only choose from a finite number of candidate places for rent or sale in a region or on a road.
In this article, we also follow this setting. Consequently, the motion-fr problem can be intu-
itively defined as follows. Given a set of mobile objects (e.g., users) U , a set of existing loca-
tions F for a specific kind of facility (e.g., stations, service branches), a candidate location set C ,
and a road network G (V ,E), the goal of the motion-fr problem is to find the optimal facility-
candidate pair such that if we relocate the facility from its current location to a substitute location
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Fig. 1. A motivating example. Fig. 2. Framework of frost.

chosen from C , the average network distance between all objects and their nearest facilities is
minimized.1

Figure 1 illustrates the motion-fr problem. The goal of the FR problem is to relocate an existing
facility (in solid squares) to a new location (candidate locations are shown in solid triangles) such
that the average distance for each user and its nearest facility is minimized. Existing FR solutions
address this by considering the users (e.g., u1,u2) as stationary objects. Consequently, each user
is represented by a single static position. In contrast, in our motion-fr problem, we exploit the
movement history of users (white and gray circles) to determine FR.
Compared to existing FR solutions under the Min-dist criterion, the motion-fr problem brings

in three novel challenges. First, a mobile object is described by a set of spatial positions instead of
a single one [21]. Consequently, this leads to large amount of positions, which may demand costly
computation. Furthermore, considering every position into account may generate inferior solu-
tions, as some positions may be erroneous or insignificant to the relocation problem. For instance,
there may be positions with GPS errors or visited by a user only occasionally. Hence, it is vital to
identify and eliminate these noisy positions during computation of average distance. Second, even
if we have garnered knowledge of relevant positions for each user’s movement history, it is non-
trivial to determine which facility a specific user will visit for service. Consequently, the average
distance is difficult to evaluate. Finally, the computational overhead can be prohibitively expensive
due to massive network distance computations over large number of users, existing facilities, and
candidate locations.
In this work, we propose a systematic framework called frost (facility relocation using

movement history) to address the preceding challenges. Figure 2 depicts the architecture of frost
to address the motion-fr problem and consists of three components as follows. In the first compo-
nent, we model user movement by utilizing the concept of reference locations [13]. Each reference
location is one of the activity places to which a user frequently shows up every day and thus is
worth considering. We can identify for each user multiple reference locations with different pres-
ence probabilities by exploiting the kernel method [24].
The second component formalizes the motion-fr problem. In light of the uncertainty of move-

ments, users who are probably present at any one of the reference locations can be modeled fol-
lowing the possible world semantics [2]. Based on the criterion of the Min-dist FR problem (i.e.,
stationary objects), the optimal answer concerning a specific possible world can be obtained. As
any possible world may occur, all possible worlds influence the result. Consequently, the average

1In this work, we focus on optimizing the generic network distance and ignore other application-dependent factors (e.g.,

policy, open/close cost, relocate cost) for various scenarios. In fact, these factors can be easily incorporated as a postpro-

cessing step by a top-k version of our proposed solution.
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distance is, in fact, a random variable. Hence, all facility-substitute pairs can be ranked according
to the expected average distance over all possible worlds.
In the last component, we systematically solve the proposed motion-fr problem. As the number

of possible worlds is huge due to massive number of users, it is impractical to explore all of them
due to its exponential complexity. Hence, to avoid exhaustive enumeration, we design a reference
location–based policy, which can be effectively leveraged to reduce the ranking process from ex-
ponential complexity to a linear one. Furthermore, city road networks usually have large volumes
of vertices and edges, which may result in costly network traversals in finding the optimal answer
for users. To address this problem, we propose an approach with the help of network locality that
provides superior efficiency. In addition, we present an alternative solution based on a network

extension scheme for addressing the motion-fr problem from scratch, in the case that existing
facilities and users are unknown in advance.
We further generalize the problem to relocating k FR pairs that collectively achieve the mini-

mum average distance. As the problem is NP-hard [23], we devise an approximate solution to the
problem. In summary, the major contributions of this article are as follows:

• We present a novel framework called frost to address the problem of motion-fr. To the
best of our knowledge, this is the first effort to consider the movement history of objects to
address the FR problem.

• We present two novel solutions to address the motion-fr problem efficiently under dif-
ferent scenarios and devise an approximate solution to address the general k-motion-fr
problem.

• Comprehensive experiments are conducted on real and synthetic data over two real road
networks. The results demonstrate that, compared to state-of-the-art FR techniques, our
proposed solutions significantly improve the efficiency by orders of magnitude and provide
more effective answers.

The rest of this article is organized as follows. We give an overview of related work in Section 2.
In Section 3, we discuss usermovement history andmodelmobile objects using reference locations.
Section 4 formally gives the definition of the motion-fr problem. In Section 5, two methods are
proposed to solve motion-fr offline and online, respectively. An approximate solution for the
general k-motion-fr problem is designed in Section 6. Section 7 analyzes the costs of the solutions.
Section 8 reports the experimental study, and Section 9 concludes this article. The set of frequently
used notations in this work is given in Table 1 for easy reference.

2 RELATEDWORK

Min-dist. The Min-dist problem, originated from the k-median problem [1], aims at minimizing the
average/sum distance between users and their nearest facilities. Zhang et al. [30] studied a typ-
ical Min-dist problem with existing facilities in continuous Euclidean space. Using lower-bound
estimators for pruning, they progressively divided a given region until the answer was identi-
fied. Xiao et al. [26] took into account road distance in the Min-dist problem. They proposed a
divide-and-conquer–based framework to split road network into sub-networks, among whose lo-
cal optima the global answer was derived. Chen et al. [3] presented a pruning technique based on
nearest location component (an alias of local network [7]) to solve the problem and two extensions
in continuous search space. However, as discussed in Qi et al. [15, 16], we can only choose from
some locations for rent or sale rather than anywhere in real applications. To this end, Qi et al.
[15] studied the problem with an extra set of candidate locations for establishing a new facility.
Index-based methods were developed to solve the problem on an L2 distance metric. Cui et al. [4]
made an effort toward the Min-dist problem with candidates on a road network. Utilizing spatial
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Table 1. Notations

Notation Definition

d (�1, �2) Network distance from location �1 to �2
dε (�1, �2) Euclidean distance between �1 and �2
nn(F , �), 2nn(F , �) Network nearest and sub-nearest facilities of � chosen from F

dnn (F , �), d2nn (F , �) Network distances from � to nn(F , �) and 2nn(F , �)

rnn(F , f ) Set of users (reference locations) whose nearest facilities are f among F

Pr [l (u) = r ], p (r ) Probability that u is present at r

E[dnn (F ,L(u))] Expected nearest facility distance of user u

〈f , c〉 An FR pair

Δ(〈f , c〉) Expected change of total distance (ED) when 〈f , c〉 is carried out

δr (〈f , c〉) Expected change of nearest facility distance of r when 〈f , c〉 is carried out

Rc , Rf Reference locations whose nearest facilities are c or 2nn(F , �) for 〈f , c〉
Rc+,Rc− Sets of reference locations where δr (〈f , c〉) ≥ 0 and δr (〈f , c〉) < 0, respectively

Δ+ (vivj ) ED upper bound on vivj
vivj , r

−−−→vivj Edge with endpoints vi and vj , and a directed edge with respect to r , respectively

σ+ (r−−−→vivj ),σ
− (r−−−→vivj ) Maximum and minimum reductions of distance on r−−−→vivj for any candidate

locality–based indices in both Euclidean space and road network, the problem can be addressed
efficiently. Nevertheless, these approaches cannot be directly applied to our problem due to the
following limitations. First, the distance calculation in the road network is more complex than in
Euclidean space, and the techniques developed for Euclidean distance are not efficient for road
network, which can be indicated by the experiments on the state of the art [16] (detailed in Sec-
tion 8.2). Second, in general cases, results derived under continuous search space may not even
be contained in the given candidates, and thus the approaches may not provide correct answers
to our problem. Third, as discussed in Qi et al. [16], the distance change depends on the relative
positions of users, the obsolete facility, and a substitute in the FR problem, which is more complex
than the Min-dist criterion.
Papadias et al. [14] focused on a variation of the Min-dist problem, which finds an optimal fa-

cility among candidates to serve all users with the minimum average distance. Their method was
for both memory and disk-resident queries in Euclidean space. Yiu et al. [29] solved the problem
on the road network utilizing network connectivity information and spatial locality. Yan et al. [27]
presented a two-phase convex-hull-based pruning technique for both exact and approximate solu-
tions. There also exist research works [1, 10] taking movement into consideration. Bespamyatnikh
et al. [1] focused on the 1-median problem. Based on kinetic data structures, they presented lower
bounds and algorithms for exact and approximate solutions. Khan et al. [10] studied the problem
with users’ paths, where the distance from a facility to a path was defined as the minimum distance
to any of its line segments. The proposed quadtree-based solution hierarchically pruned irrelevant
facilities and line segments of paths. None of these techniques can address the problemwe propose
due to the following fundamental differences. First, it is a set of facilities that collectively serve all
users in our problem, whereas these works focused on only a single one. Second, the problems
either treated movement as static points in every time interval [1] or only considered the near-
est sample point of a path [10]. These models cannot be used to represent the entire movement
history.

Facility relocation. FR problems aim to minimize the total distance between users and facilities
by replacing some existing facilities with substitutes, under a variety of constraints. Despite the
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same (Min-dist-based) criterion, the FR problem is more complicated than theMin-dist problem, as
the obsolete facility f and picked candidate c in an 〈f , c〉 pair play their roles together in distance
evaluation (detailed in Section 5.1). Wang et al. [23] first introduced the FR problem and clarified
the difference compared to the k-median problem. Three approximate solutions were proposed for
solving the FR problem. Sonmez and Lim [17] took into account weight changes of users. Based on
an integer programming model, a decomposition algorithm was designed for near-optimal solu-
tions. Turanoglu and Akkaya [20] studied an extension called the dynamic facility layout problem

(DFLP) where weights of users change over time. A hybrid heuristic was proposed that was a
simulated annealing algorithm based on bacterial foraging optimization. Goranci et al. [8] further
extended the DFLP in metric space where users may change their positions. Based on the cover-
age radii of facilities, they designed a tree-based hierarchical decomposition method. These efforts
cannot be available to motion-fr for the following reasons. First, the distance matrix between the
user and facility was given as a known parameter, whereas in our problem it is unknown and the
distance evaluation is a critical issue that needs to be settled. Second, in these studies, as the num-
ber of users and facilities were limited (e.g., tens of them) and the efficiency was not the focus, their
algorithms cannot guarantee the efficiency for a large scale of users. Third, they took into account
not only the transportation distance/cost between users and facilities but also the relocation cost
of facilities.
Li et al. [12] studied another kind of FR problem in which all facilities were relocated. They

proposed a fast PAM-based refinement for the problem. Halper et al. [9] extended the problem
by taking the distances/costs traveled by facilities into account. Integer programming formulation
and local search heuristics were utilized. In Farahani et al. [6], there was only one facility, and
the resettlement could be conducted several times over time. As relocating all facilities deviates
from our problem setting (similar to the 1-median problem), these approaches cannot be applied
to solve motion-fr.
Qi et al. [16] studied an FR problem in Euclidean space with the same optimization objective

as ours. The authors designed methods based on spatial locality to restrict the search space. Un-
like in Euclidean space, where the aim is to decrease the number of facility-candidate pairs to be
calculated, the key challenge in the road network is to reduce the number of network traversals,
due to the expensive computation cost. As empirical studies shown in Section 8, their proposed
techniques are adapted for solving our problem by replacing with network distance; however, they
are not as efficient as for Euclidean space. Hence, techniques for the road network are required.

3 PRELIMINARIES

In this section, we first discuss the representation of mobile objects and then introduce the kernel
method, which is employed to model movements of users in our framework.

3.1 Mobile Objects

In general, mobile objects (e.g., people, animals) are ubiquitous in real-life applications. The move-
ment of a user is commonly represented in two ways: continuous (e.g., trajectory [31]) and dis-

crete (e.g., check-ins [28] and lifelogs [22]). The former explicitly records every move of an object,
whereas the latter works in an implicit way, which reflects activities at locations and movements
between them. For both cases, a moving user is modeled as a set of positions [21] (e.g., sample
points of a trajectory or check-ins/lifelogs at locations). Nevertheless, in addition to the costly
computation, taking every position into account is inappropriate due to three kinds of valueless
points, namely noisy, passing-by, and outlier points. Noisy points result from data or GPS errors,
whereas the latter two are relevant to mobility. Compared to places where daily activities are con-
ducted, passing-by points are those where a user does not spend any time except passing by. In
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Fig. 3. Capturing reference locations.

addition, outlier points are those visited by users occasionally. These points are either not con-
tributive or poorly contributive to our goal to determine which facility is inferior and where is
optimal to build a substitute. Hence, it is more reasonable to focus on representative points, which
are more effective in describing the frequent activity areas of a user.
On the other hand, as remarked in Li et al. [13], moving users are intimately associated with two

major behaviors: frequently appearing at some places and staying for a duration. If we incorporate
Tobler’s first law of geography (“near things are more related than distant things”) [19], then
we can characterize the mobility behavior of users as follows. First, a user usually correlates to
some reference locations [13]. Second, a user tends to conduct his or her activities nearby the
reference locations [28].
In summary, it makes sense to identify reference locations from raw movement history data,

which enables us to eliminate the aforementioned limitations and pave the way to effectively
capture daily activity places for handling the motion-fr problem.

3.2 Capturing Reference Locations

We employ the kernel method [24] to capture reference locations of each user. The kernel method
has been widely used in a variety of domains, including the detection of frequent activity places
for humans (the accuracy is up to 92.3%) [18]. In this study, we use standard bivariate normal den-

sity kernel, which is f (〈x ,y〉) = 1
nh2

∑n
i=1

1
2π exp(−dε (〈x,y〉,〈xi ,yi 〉)

2h2 ),where f (〈x ,y〉) is the estimated
probability density function, 〈xi ,yi 〉 is a sample position (i ∈ [1,n]) of an object, dε (〈x ,y〉, 〈xi ,yi 〉)
denotes the Euclidean distance, and h is the smoothing parameter. We employ a popular method

introduced by Worton [24] to choose h: h = 1
2 (ς

2
x + ς

2
y )

1
2n− 1

6 , where ςx and ςy are the standard
deviations of xi and yi .
In line with Li et al. [13], we capture reference locations of each user as follows. We discretize

the continuous space into grids and evaluate the density for each of them. The top-p% (5% in this
article) grids with the highest density values are selected. Inspired by the notion of a reference

spot [13], in this work we aggregate the adjacent grids among the selected ones together to form a
series of separate grid groups. In each group, the peak grid with the highest density is intuitively
regarded as a reference location. Moreover, the density accumulation of each group is normalized
and viewed as the presence probability that a user appears nearby the corresponding reference
location. Figure 3(a) and (b) illustrate positions of a user and the probabilities of grids calculated
using the kernel method. Based on the kernel method and grid group strategy, the valueless points
are avoided and three of his or her reference locations are captured.
In practice, reference locations usually can be reached by a road network. This indicates that

they are located on edges of a given networkG (V ,E). If this is not the case, then we assume that a
reference location is located at its nearest point inG. This assumption is reasonable, as residential
and office buildings may not exactly be located on roads in G.
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4 PROBLEM DEFINITION

In this section, we formally define the motion-fr problem studied in this article. We begin by
introducing some terminology that is necessary to facilitate exposition.
A location � in this work is a planar position on an edge in a given directed road networkG (V ,E),

with a geographical coordinate (i.e., latitude and longitude). Each directed edge in E between
a pair of vertices in V is associated with a positive weight, which represents travel distance or
time cost, and so forth. Given any two locations �1 and �2, the directed network distance from �1
to �2 is denoted by d (�1, �2), which may not be equal to d (�2, �1). Since the locations of existing
facilities (respectively, candidates to deploy a substitute) can usually be obtained precisely, we
denote facilities (respectively, candidates) as a set of locations F = { f1, f2, . . . , f |F | } (respectively,
C = {c1, c2, . . . , c |C | }), where |F | (respectively, |C |) is the cardinality of F (respectively, C). For a
user at location �, the network nearest and sub-nearest (i.e., second nearest) facilities with respect
to F are denoted as nn(F , �) and 2nn(F , �), and the network distances from � to them are defined
as dnn (F , �) = d (�,nn(F , �)) and d2nn (F , �) = d (�, 2nn(F , �)), respectively.

2 Conversely, we denote
the set of users whose nearest facilities are f among F as rnn(F , f ). An FR pair that consists of
an obsolete facility f ∈ F and a candidate c ∈ C for substitution is defined as 〈f , c〉. For a user
located at �, if 〈f , c〉 ∈ F ×C is carried out, the distance to his or her nearest facility will become
dnn (F\{ f } ∪ {c}, �).

To minimize the average distance between users and their respective nearest facilities, we have
to identify their locations first. However, as discussed in Section 3, a mobile objectu may be present
at a set of nu reference locations L(u) = {r1, r2, . . . , rnu }. Let l (·) denote a reference location(s)
where “·” is(are) present, then l (u) ∈ L(u) and∑nu

i=1 Pr [l (u) = ri ] = 1. Observe that this differs from
the classicalMin-dist criterion [15], where each object has only a single location. How canwe select
the Min-dist FR pair given that objects are mobile?
Since the movements of users are uncertain, they can be described by following the possible

world semantics. Given a set ofm users U = {u1,u2, . . . ,um }, each user ui is associated with ref-
erence locations L(ui ), then a possible world w = (rw1 , r

w
2 , . . . , r

w
m ) is a list of location instances

with one instance for each user, where rwi ∈ L(ui ). Assume that the reference locations of users
are independent from each other, then Pr [l (U ) = w] =

∏m
i=1 Pr [l (ui ) = r

w
i ]. LetW be all possible

worlds, then |W | = ( |L(u1 ) |1 ) . . . ( |L(um ) |
1 ) =

∏m
i=1 |L(ui ) |. Obviously,

∑
w ∈W Pr [l (U ) = w] = 1.

Note that for a particular possible worldw , each user is associated with only a single reference
location. This is in line with the setting of the Min-dist FR problem.

Definition 4.1. Given a facility set F , a possible worldw, and a FR pair 〈f , c〉, the change of total
distance between all users U and their respective nearest facilities is defined3 as

Δw (〈f , c〉) =
m∑
i=1

(dnn (F , r
w
i ) − dnn (F\{ f } ∪ {c}, rwi )).

Δw (〈f , c〉) can be an alternative to evaluate the distance change on average (i.e., Δw (〈f , c〉)/m),
as the denominatorm is consistent for every pair 〈f , c〉 ∈ F ×C . Hence, the FR pair with the max-
imal Δw (〈f , c〉) is the optimum inw with respect to the Min-dist criterion.
Figure 4(a) depicts three existing facilities F = { f1, f2, f3}, two candidatesC = {c1, c2}, and three

users U = {u1,u2,u3}, and each of them has two reference locations. The numbers on the edge
segments represent the travel costs. Figure 4(b) shows a possible world w = (r11, r22, r32) with FR

2Without ambiguity, in this article the directed network distance and network nearest (respectively, sub-nearest) facility

are referred to as distance and nearest (respectively, sub-nearest) facility for simplicity.
3For clarity and brevity, we omit F and U in the representation, as they are regarded as default settings in this work.
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Fig. 4. Changes to total distance in possible worlds.

pair 〈f3, c2〉. According to Definition 4.1, 〈f3, c2〉 is the optimal solution in w among all FR pairs
(Δw (〈f3, c2〉) = 4). Unfortunately, there are seven other possible worlds, and 〈f3, c2〉 may not al-
ways be the optimum. For example, inw ′ = (r12, r21, r31), users fail to benefit from 〈f3, c2〉. Instead,
another FR pair 〈f2, c1〉 is optimal (Δw ′ (〈f2, c1〉) = 9). Accordingly, we need a mechanism to rank
FR pairs taking all possible worlds into account. As the distribution of Δw for any FR pair is a
random variable, it is reasonable to evaluate the expected value over all possible worlds.

Definition 4.2. Given a set of facilities F and a set of moving users U for all possible worldsW ,
the expected change of total distance (ED) with respect to a FR pair 〈f , c〉 is defined as

Δ(〈f , c〉) =
∑
w ∈W

(Δw (〈f , c〉) × Pr [l (U ) = w]).

We are now ready to define the motion-fr problem addressed in this article that incorporates
the concepts of reference location and the expected Min-dist criterion following possible world
semantics.

Definition 4.3. Given a directed road network G and a set of users U , each of whose movement
can be modeled as a set of reference locations, the movement history–conscious facility relocation

(motion-fr) problem aims to find an FR pair 〈f , c〉 among a set of existing facilities F and a set of
candidate locations C such that 〈f , c〉OPT = argmax〈f ,c〉∈F×CΔ(〈f , c〉).

To find the optimal FR pair with the highest ED, we need to calculateΔw (〈f , c〉) for everyw ∈W ,
which requires enumerating all possible worlds. Unfortunately, since |W | increases exponentially
with |U |, it is impractical to directly compute ED using Definition 4.2. To address this challenge,
next we show how the ED computation can be transformed from the aspect of reference locations
and can be completed in polynomial time.

Definition 4.4. Let rw be the reference location of a mobile user u in a possible world w . Then
the expected nearest facility distance of u with respect to F in all possible worldsW is defined as

E[dnn (F ,L(u))] =
∑
w ∈W

(dnn (F , r
w ) × Pr [l (U ) = w]).

Lemma 4.5. E[dnn (F ,L(u))] =
∑

r ∈L(u ) (dnn (F , r ) × p (r )).4
Theorem 4.6. Given a set of facilities F , a set of users U , and a FR pair 〈f , c〉, the expected

change of total distance in Definition 4.2 can be computed as Δ(〈f , c〉) = ∑m
i=1 (E[dnn (F ,L(ui ))] −

E[dnn (F\{ f } ∪ {c},L(ui ))]).
In light of the assumption that reference locations of users are independent with each other, The-

orem 4.6 can be derived, which means that we no longer need to enumerate all possible worlds and

4In the following, for brevity we shall use p (r ) to stand for Pr [l (u ) = r ].
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Fig. 5. ED with 〈f3, c1〉. Fig. 6. Relationships between f and c .

the complexity of ED significantly drops to linearity. Suppose that each reference location in Fig-
ure 4(a) occurs with the same probability, say 0.5. As illustrated in Figure 5(a),

∑3
i=1 E[dnn (F ,L(ui ))]

can be easily obtained as 25; in Figure 5(b), we can compute
∑3

i=1 E[dnn (F\{ f3} ∪ {c1},L(ui ))] = 21,
where a substitute is built at c1 to replace f3. In this case, Δ(〈f3, c1〉) = 4. Similarly, we evaluate Δ
for each of the FR pairs, and the one with highest expected value will be selected as the optimal
solution (i.e., 〈f , c〉OPT ) for the motion-fr problem.

Extensions to the MOTION-FR problem. The motion-fr problem can be further extended by ap-
pending context information to reference locations, which could be useful in practice. First, fa-
cilities have obvious temporal character in some scenarios (e.g., people usually go to cinemas or
bars in the evening). By filtering out the positions that are temporally irrelevant, we can extract
time-dependent reference locations for time-related facilities. Another extension is based on behav-
ior patterns of users. For example, office workers are more likely to go to restaurants for lunch
from their offices rather than from homes. That means that the probabilities to visit some specific
type of facilities vary with the places at which a user is present. Given a facility type T , the tran-
sition probability to visit facilities of type T from reference location ri , denoted by Pri (T ), can be

simply evaluated5 as Pri (T ) =
# of visits to facilities of type T from ri

# of total visits from ri
. Based on the Markov model, we can

normalize Pr [l (u )=ri ]·Pri (T )∑n
i=1 Pr [l (u )=ri ]·Pri (T ) as the weighted presence probabilities for the specific facility typeT .

In the following section, we will present solutions to address the motion-fr problem, which are
generalized and can directly be applied for such extensions.

5 INDEX-BASED AND INDEX-FREE SOLUTIONS

A straightforward solution to the motion-fr problem based on Theorem 4.6 andDefinition 4.3 is to
check all FR pairs exhaustively. Specifically, for each 〈f , c〉 ∈ F ×C , we compute its Δ(〈f , c〉). Then
the FR pair with the greatest ED is the optimal answer. Despite the avoidance of enumerating all
possible worlds, this method is still expensive due to the massive network traversals that occur due
to repeatedly finding the nearest facility of each reference location for every FR pair. In this section,
we present two novel techniques for solving the motion-fr problem with superior efficiency. We
begin by first discussing the relationship between f and c in terms of reference locations.

5.1 Relationship between f and c

As discussed in Section 4, if the reference location r for useru shifts tonn(F\{ f } ∪ {c}, r ) as its new
nearest facility with respect to 〈f , c〉, then we denote expected change of nearest facility distance of
r as δr (〈f , c〉). Note that this is computed as δr (〈f , c〉) = (dnn (F , r ) − dnn (F\{ f } ∪ {c}, r )) × p (r ).
Then, for a specific FR pair 〈f , c〉, we can divide all reference locations R =

⋃
u ∈U L(u) into three

groups as follows based on their changes to nearest facilities:

5The probability calculation is beyond the scope of this work. We only give a straightforward idea to evaluate.
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Fig. 7. LNB method.

• r ∈ Rc = rnn(F\{ f } ∪ {c}, c ): c will be the new nearest facility and δr (〈f , c〉) = (dnn (F , r ) −
d (r , c )) × p (r ).

• r ∈ Rf = rnn(F , f )\rnn(F\{ f } ∪ {c}, c ): Once f is removed, 2nn(F , r ) will be the new near-
est facility. Thus, δr (〈f , c〉) = (dnn (F , r ) − d2nn (F , r )) × p (r ).

• r ∈ R
f ∪c = R\(rnn(F , f ) ∪ rnn(F\{ f } ∪ {c}, c )): The reference locations are unaffected by f

or c , and therefore their nearest facilities are unchanged.

Note thatRf is not simply defined as rnn(F , f ) because rnn(F , f ) ∩ Rc � ∅ if f is exactlynn(F , r )
and d (r , c ) < d2nn (F , r ). This indicates that c will be the new nearest facility rather than 2nn(F , r )
after removing f . Figure 6 illustrates three different relationships between f and c when 〈f , c〉
is carried out: (a) f and c respectively affect different sets of reference locations (i.e., rnn(F , f ) ∩
rnn(F ∪ {c}, c ) = ∅), (b) f is nn(F , r ) and d (r , c ) ≤ dnn (F , r ), and (c) f is nn(F , r ) and dnn (F , r ) <
d (r , c ) ≤ d2nn (F , r ). By considering the value ranges of these cases, we further partition Rc into
Rc+ and Rc−. The former consists of cases (a) and (b) where δr (〈f , c〉) ≥ 0. For r ∈ Rc+, c must be
the new nearest facility, whether nn(F , r ) is f or not, then the value of δr (〈f , c〉) is only relevant
to c regardless of f . For the latter, Rc− is for case (c) where δr (〈f , c〉) is negative.
Lemma 5.1. Δ(〈f , c〉) = ∑r ∈Rc+∪Rc−∪Rf δr (〈f , c〉).

Reconsider Figure 5(b). If 〈f3, c1〉 is carried out, only r12, r21, and r31 change their nearest facilities:
the sub-nearest facility f2 for r12, and candidate c1 for r31 (case (a)) and r21 (case (b)), i.e., Rf3 = {r12},
Rc1+ = {r21, r31} and Rc1− = ∅. Based on Lemma 5.1, Δ(〈f3, c1〉) = ∑r ∈{r12,r21,r31 } δr (〈f3, c1〉) = 4.

5.2 Local Network–Based Method

To avoid the repeat network traversals for every FR pair, we adapt the local network [7] for comput-
ing ED efficiently, which was proposed to model the network locality of a user with respect to his
or her nearest facility. Specifically, it is a sub-network expanded from user location l (u) = r with a
distance less than or equal to dnn (F , r ), denoted by LN (r ). For instance, the bold edge segments in
Figure 7(a) represent LN (r31). We present a local network-based (LNB) method that addresses the
motion-fr problem by extending with local sub-networks and incorporating the distance factor
to the network locality. Our approach differs from Ghaemi et al. [7] in the following ways. First,
only existing facilities, rather than users, are settled on the road network to reduce network com-
plexity. Second, we extend the concept of local network to sub-nearest facility for dealing with the
reference locations in Rc− ∪ Rf , which is beyond the problem setting in Ghaemi et al. [7]. Third, we
introduce the notion of expanding direction of an edge to replace delimitation markers (as shown
in Figure 7(a)), which are used to delimit the local networks [7]. Combining with expanding direc-
tion, we design two similar data structures to index local networks and local sub-networks, based
on which LNB method can retrieve the optimal FR pair without any network traversal.
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Fig. 8. Compute change of distance via σ+ and σ−.

According to Section 5.1, the positive return of ED is only brought by Rc+ when 〈f , c〉 is
launched, whereas Rc− and Rf lead to negative ones. In the following, we first focus on Rc+ for the
positive return.

Edge with expanding direction. As cases (a) and (b) shown in Figure 6, candidate c is nearer
than original nearest facilities, then reference locations in Rc+ can be obtained whose local net-
works enclose c . Furthermore, based on the expanding direction from r , edges covered by LN (r )
have lower and upper distances from r . Take c3 in Figure 7(a) as an example. With the help of
LN (r31), we can easily derive that r31 is contained in Rc3+. To evaluate the positive return brought
by r31, we must have the distance to c3. When finding the shortest path by network traversal (e.g.,
the Dijkstra algorithm [5]), all edges in LN (r31) have to be explored before c3 is encountered. To
completely avoid repeated traversals from r31 to candidates inside LN (r31), we can make use of
distance information in LN (r31). Specifically, given the query candidate c3 and its location on edge
v3v4 (e.g., d (v3, c3)), if we are able to directly fetch the lower distance of v3v4 expanding from r31
(i.e.,d (r31,v3)) δr31 (〈f , c3〉) can be immediately calculated as (d (r31,v3) + d (v3, c3)) × p (r31). To this
end, we extend the local network with direction and distance information.
Given a reference location r and an undirected edge vivj , if a network path expanded from r

traverses the edge or part of it from vi toward vj , we denote the directed edge with respect to r as

r−−−→vivj . For example,v1v3 andv1v5 are two edges in Figure 7(a). Expanding the local network of r31,

v1v3 is traversed from v1 toward v3, and thus the directed edge with respect to r31 is r31
−−−→v1v3. The

case of v1v5 is complicated. The network path expanded from r31 to f1 traversing v1v5 is from v5
toward v1. Hence, we denote it as r31

−−−→v5v1. In contrast, the directed edge is r31
−−−→v1v5 from r31 to f2.

Given r−−−→vivj on which a candidate is built, we denote themaximum and minimum changes of dis-

tance on r−−−→vivj asσ+ (r−−−→vivj ) andσ− (r−−−→vivj ), respectively. In Figure 8(a), r accesses the nearest facility
f traversing r−−−→vivj (the general case that r expands its local network along r−−−→vivj also holds), then

σ+ (r−−−→vivj ) and σ− (r−−−→vivj ) can be easily computed as dnn (F , r ) − d (r ,vi ) and dnn (F , r ) − d (r ,vj ). Re-
call that only Rc+ contributes to a positive return and δr ∈Rc+ (〈f , c〉) is only relevant to c regardless
of f , which means that the ED upper bound of any FR pair only depends on c . Utilizing σ+ (r−−−→vivj ),
we define the ED upper bound on vivj , denoted by Δ+ (vivj ), as the maximum positive return that
can be achieved by any FR pair, if the candidate c is built onvivj . Specifically, Δ

+ (vivj ) is computed
as
∑

r ∈Rc+ (σ × p (r )), where Rc+ consists of reference locations whose local networks overlap vivj
and

σ =

{
σ+ (r−−−→vivj ) if r−−−→vivj ,
σ+ (r−−−→vjvi ) if r−−−→vjvi . (1)

As there is no road of retrogression when expanding a local network, either of the cases in Equa-

tion (1) holds. On the other hand, based on σ− (r−−−→vivj ), if a candidate c is built on r−−−→vivj within the
local network (Figure 8(b)), we can calculate δr (〈f , c〉) regardless of any obsolete facility as

δr (〈f , c〉) = (dnn (F , r ) − d (r , c )) × p (r )
= (dnn (F , r ) − (d (r ,vj ) − d (c,vj ))) × p (r )
= (σ− (r−−−→vivj ) + d (c,vj )) × p (r ).

(2)
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Equation (2) has three special cases. First, if δr (〈f , c〉) < 0, which means that c is located out-
side the local network of r (i.e., r � Rc+), then we set δr (〈f , c〉) to zero regardless of obsolete fa-

cilities. Second, if δr (〈f , c〉) > σ+ (r−−−→vivj ), it means that d (c,vj ) > d (vi ,vj ), which is impossible.
Consequently, c must not be accessed from vi to vj . This indicates that the reverse direction

r−−−→vjvi exists and r must locate on vivj . Hence, c takes effect on the direction from vj to vi , and

δr (〈f , c〉) = (σ− (r−−−→vjvi ) + d (c,vi )) × p (r ) instead. In this case,vivj is called a bidirectional directed

edge with respect to r . If a candidate exactly overlaps r , σ+ (r−−−→vivj ) = σ+ (r−−−→vjvi ) = dnn (F , r ). Ac-
cordingly, σ = dnn (F , rk ) (in Equation (1)).

For example, consider c2 in Figure 7(a). In this case, σ− (r31−−−→v3v4) + d (c2,v4) = −4 + 2 < 0. It in-
dicates that c2 is outside LN (r31), then δr31 (〈f , c2〉) is 0 regardless of obsolete facilities. The situa-
tion of c1 is more complex as both r31

−−−→v1v5 and r31
−−−→v5v1 exist. As σ

− (r31−−−→v5v1) + d (c1,v1) = 6 + 6 >

σ+ (r31
−−−→v5v1) = 10, c1 leads to the change of distance from the reverse direction r31

−−−→v1v5 instead

of r31
−−−→v5v1. Hence, regardless of f , δr31 (〈f , c1〉) = (σ− (r31−−−→v1v5) + d (c1,v5)) × 0.5 = (−2 + 10) ×

0.5 = 4.
The third special case can be described using Figure 8(c). Suppose that v1v3 is a bidirec-

tional road. Then the shortest path from r to c is r → v2 → v3 → c instead of r → v1 → c . This
is another kind of bidirectional directed edge with respect to r . This is because except for the
shortest path (via v2v3), the other paths from r to v3 (e.g., via v1v3) have longer distances (e.g.,

d (r ,v3) < d (r ,v1) + d (v1,v3)). Then c is reached via the shortest path from v3 (i.e., r
−−−→v3v1) instead

of v1 (i.e., r
−−−→v1v3). Obviously, there exists one and only one location �c , called critical location, on

v1v3 such that d (r ,v1) + d (v1, �c ) = d (r ,v3) + d (v3, �c ). If an edge vivj has a critical location �c ,
the farthest distance from r to any location of vivj is onto �c instead of its endpoints. Thus, Equa-
tion (2) needs to be adjusted if c locates on vivj following the lemma presented next.

Lemma 5.2. Let c be on a bidirectional vivj with �c regardless of obsolete facilities and d (r ,vi ) <
d (r ,vj ) < d (r ,vi ) + d (vi ,vj ). If d (c,vj ) ≥ d (�c ,vj ), then Equation (2) is applicable; otherwise, it is

adjusted to δr (〈f , c〉) = (σ− (r−−−→vivj ) + 2 × d (�c ,vj ) − d (c,vj )) × p (r ).
Local network/sub-network data structures. In this part, we further extend the local network con-

cept to the local sub-network to handle the negative returns associated with reference locations in
Rc− ∪ Rf . Then we devise data structures to index local networks and local sub-networks.

Definition 5.3. GivenG (V ,E), a set of facilities F , and a reference location r , the local sub-network
of r , denoted by L2N (r ), is a sub-network expanded from r with a distance greater than dnn (F , r )
and less than or equal to d2nn (F , r ).

We can leverage on the notions of local network and local sub-network to obtain Rc− and
Rf with respect to 〈f , c〉 as follows: Rc− = rnn(F , f ) ∩ {r |c ∈ vivj ∧vivj ∈ L2N (r )} and Rf =
rnn(F , f )\{r |c ∈ vivj ∧vivj ∈ LN (r ) ∪ L2N (r )}.

Based on the preceding discussion, we design the data structures Local Network Table (LNT) and
Local Sub-Network Table (L2NT) to organize edges of local networks and sub-networks. Each entry
of LNT is associated with a directed edge and consists of its Δ+ (vivj ) and a set of reference location

entries, each of which is in the form of 〈p (r ),σ+ (r−−−→vivj ),σ− (r−−−→vivj ),d (�c ,vj )〉, where d (�c ,vj ) is set
to zero if �c does not exist. Figure 7(b) illustrates part of LNT that is correlated with r31 for simplic-
ity. L2NT is similar to LNT except Δ+ (vivj ). We construct the two index tables in four steps. First,

from a reference location r , we expand network paths via the Dijkstra algorithm. For each r−−−→vivj
traversed, we record d (r ,vi ) and d (r ,vi ) + d (vi ,vj ). Second, after the nearest facility of r is found,

we compute for each recorded r−−−→vivj the σ+, σ− and d (�c ,vj ) into LNT. For r−−−→vivj , if d (�c ,vj ) > 0,

then it means a critical location and r−−−→vjvi exist. Hence, we insert the reverse edge into LNT. Third,
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ALGORITHM 1: Local Network Based.
Input: LNT, L2NT, F , C and Δ(f ) (f ∈ F )
Output: optimal FR pair 〈f , c〉OPT

1 initialize LNH of C based on LNT ordered by Δ+ (vivj );

2 while LNH � ∅ do
3 〈c, Δ+ (vivj ), vivj 〉 = Pop (LNH );

4 if Δ(〈f , c〉OPT ) > Δ+ (vivj ) then return 〈f , c〉OPT ;

5
∑
r ∈Rc+ δr (〈f , c〉) := 0; // without regard to any facility

6 Δ(f )′ := ∅; // initial offset value of any facility is 0

7 foreach r ∈ Rc+ (r associated with vivj in LNT) do
8 if d (�c , vj ) > d (c, vj ) then
9 compute δr (〈f , c〉) based on Lemma 5.2;

10 add δr (〈f , c〉) to∑r ∈Rc+ δr (〈f , c〉);
11 Δ(nn (F , r ))′ := Δ(nn (F , r ))′ − δr (〈f , c〉);
12 continue;

13 d := σ − (r−−−→vivj ) + d (c, vj );

14 if 0 < d ≤ σ + (r−−−→vivj ) then
15 add d × p (r ) to∑r ∈Rc+ δr (〈f , c〉);
16 Δ(nn (F , r ))′ := Δ(nn (F , r ))′ − d × p (r );
17 else if d > σ + (r−−−→vivj ) then
18 if vjvi exists then

19 d := σ − (r−−−→vjvi ) + d (c, vi );
20 if 0 < d then
21 add d × p (r ) to∑r ∈Rc+ δr (〈f , c〉);
22 Δ(nn (F , r ))′ := Δ(nn (F , r ))′ − d × p (r );

23 foreach r ∈ Rc− (r associated with vivj in L2NT) do

24 compute Δ(nn (F , r ))′ := Δ(nn (F , r ))′ + (σ − (r−−−→vivj ) + d (c, vj ) + d2nn (F , r ) − dnn (F , r )) × p (r ); // the process

is similar to lines 9--22

25 MaxΔ(f ) := max{Δ(fi )′ |fi ∈ Δ(f )′, Δ(fj ) |fj ∈ F };
26 Δ(〈f , c〉) := ∑r ∈Rc+ δr (〈f , c〉) +MaxΔ(f ) ;

27 if Δ(〈f , c〉) > Δ(〈f , c〉OPT ) then 〈f , c〉OPT := 〈f , c〉 and Δ(〈f , c〉OPT ) := Δ(〈f , c〉);
28 return 〈f , c〉OPT ;

we continue the traversal until the sub-nearest facility is found. Each edge of L2N (r ) and the
corresponding p (r ), σ+, σ− and d (�c ,vj ) are stored into L2NT. Notably, if d (r , c ) > d2nn (F , r ) (for
some frontier edges), which means that c is outside L2N (r ), we set d (r , c ) = d2nn (F , r ). Following
the preceding three steps, all reference locations are iteratively scanned, and their dnns and d2nns
are recorded. Finally, we accumulate Δ+ (vivj ) of each vivj in LNT with corresponding reference
locations.

The index-based LNB algorithm. Observe that LNT and L2NT enable us to evaluate the optimum
from all FR pairs without undertaking network traversal. Algorithm 1 outlines this procedure.

As discussed in Section 5.2, candidate c determines the ED upper bound of any FR pair 〈f , c〉
with c , whichmeans that we can utilize the ED upper bound to tighten the search space by ignoring
inferior FR pairs. Based on LNT, we design and initialize a max-heap LNH orderingC by Δ+ (vivj )
to this end. According to the definition of Δ+ (vivj ), candidates in LNH can be ranked based on
the edges they are located on. Each entry of LNH is a 3-tuple 〈c,Δ+ (vivj ),vivj 〉. Forvivj on which
c is located, if the reverse directed edge vjvi exists, we use Δ+ (vivj ) + Δ

+ (vjvi ) for ordering in-
stead (line 1). Then we iteratively check the top candidate in LNH . If the ED of current optimal
FR pair is greater than Δ+ (vivj ) related to the popped candidate, the validation is finished (line 4).
Otherwise, we first evaluate Δ(〈f , c〉) taking Rc+ into account regardless of f . In this process, we
use a hash map Δ( f )′ to record offset values of Δ( f )s for corresponding facilities with respect to
r ∈ Rc+, where f = nn(F , r ) (lines 6, 11, 16, and 22). Specifically, Δ( f ) is the maximum negative
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effect brought by removing f and computed as Δ( f ) =
∑

r ∈rnn (F ,f )[(dnn (F , r ) − d2nn (F , r )) ×
p (r )]. Note that σ+ is not checked in line 20, as it is impossible that σ− (r−−−→vivj ) + d (c,vj ) is in-
valid in both directions. Similar to lines 9 through 22, we evaluate Δ( f )′ values with respect to
r ∈ Rc− (lines 23 and 24). Afterward, we evaluate the maximum negative effect with respect to c .
If a superior FR pair is found, we update the current optimal one (lines 25 through 27). Next, we
probe the unchecked candidates in LNH until the optimal FR pair is finally retrieved.

5.3 Extended Network Method

In the preceding method, existing facilities and movements of users are assumed to be known a

priori. Consequently, we can pre-compute and index them offline so that the motion-fr problem
with an arbitrary group of candidates can be answered efficiently. Nevertheless, in some cases,
we may not have any idea about facilities or users in advance. How can we address the motion-
fr problem in this scenario? To this end, we propose a method inspired by the network extension

scheme so that the motion-fr problem can be answered from scratch. The main idea of the index-
free method is to accumulate δr (〈f , c〉)s progressively for each obsolete facility and candidate
substitute as nearest and sub-nearest facilities are discovered for reference locations.
The proposed method is index free and consists of four steps that are detailed in Algorithm 2.

First, we extend network facility vertices from F to F ∪C . Second, for each reference location
r , we explore its nearest and sub-nearest facilities in F ∪C . In this process, if a candidate ver-
tex c ∈ C is encountered before (respectively, after) nn(F , r ) is found, we temporarily record the
distance in a vector Vn (respectively, V2) (lines 5 through 8). Third, once 2nn(F , r ) is found, we
compute and accumulate the corresponding δr (〈f , c〉)s for all encountered candidates inVn andV2
(lines 11 through 19). We employ a Candidate Accumulation Table (CAT) to store the accumulated
ED of every candidate regardless of obsolete facilities (i.e., Rc+). Each entry of CAT is in the form
of 〈c,∑r ∈Rc+ δr (〈f , c〉)〉. Similarly, a Facility Accumulation Table (FAT) is designed for evaluating
Δ( f )s. Its entry is in the form of 〈〈f , c〉,value〉, where value related to 〈f , c〉 has two aspects: If
c = null , it means removing f without a substitute (i.e., value = Δ( f )); otherwise, value is an ac-
cumulative offset value for

∑
r ∈Rc−∪Rf δr (〈f , c〉) (by adding up to Δ( f )). Finally, after all reference

locations are scanned, we compute EDs of all FR pairs based on CAT and FAT , which leads us to
the final answer.

6 EXTENSION TO k-MOTION-FR

In the preceding section, we develop methods to solve the motion-fr problem in offline and on-
line manners, respectively. In certain applications, however, it may be desirable to relocate k in-
ferior facilities with substitutes that collectively achieve the most reduction of expected distance.
For instance, a car-sharing company may have sufficient budget to relocate five inferior stations.
Consequently, we need to generalize the motion-fr problem. We refer to this problem as the
k-motion-fr problem (i.e., the multi-FR problem), which is defined based on Definition 4.3.

Definition 6.1. Given a set of existing facilities F , a set of candidate locationsC , a set ofm users
U , and a positive integer k (k ≤ |F | ∧ k ≤ |C |), let 〈Fk ,Ck 〉 be an FR set pair where Fk ⊆ F ,Ck ⊆ C
and |Fk | = |Ck | = k , and the k-motion-fr problem aims to find an optimal FR set pair 〈Fk ,Ck 〉OPT

such that 〈Fk ,Ck 〉OPT = argmax
∑m

i=1 (E[dnn (F ,L(ui ))] − E[dnn (F\Fk ∪Ck ,L(ui ))]).

Observe that the k-median problem, which is NP-hard [23], is a special case of the k-motion-
fr problem when F = ∅. Hence, the k-motion-fr problem is NP-hard. As the methods proposed
in Section 5 obtain the optimal result accurately, the greedy heuristic can be applied to solv-
ing k-motion-fr. The EN method requires network traversals when querying, which will re-
sult in expensive time cost in each greedy step, and then we extend the aforementioned LNB
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ALGORITHM 2: Extended Network.

1 extend G (V , E ) with candidate vertices in C ;

2 foreach r j ∈ L(ui ) ∧ ui ∈ U do

3 nn := null ; // temporary nearest facility for each r j
4 while traverseG from r j for each vertex v do
5 if v ∈ C and nn = null then
6 record 〈v, d (r j , v )〉 in a 2D Vector Vn ;

7 else if v ∈ C and nn � null then
8 record 〈v, d (r j , v )〉 in a 2D Vector V2 ;

9 else if v ∈ F and nn = null then
10 nn := v , dnn := d (r j , v );

11 else if v ∈ F and nn � null then
12 d2nn := d (r j , v );
13 add (dnn − d2nn ) × p (r j ) to FAT .〈nn, null 〉;
14 foreach vk ∈ Vn do
15 add (dnn − d (r j , vk )) × p (r j ) to CAT .vk ;

16 add (d2nn − dnn ) × p (r j ) to FAT .〈nn, vk 〉;
17 foreach vk ∈ V2 do
18 add (d2nn − d (r j , vk )) × p (r j ) to FAT .〈nn, vk 〉;
19 release Vn , V2 and break;

20 compute Δ(〈f , c〉) 〈f , c〉 ∈ F ×C and return 〈f , c〉OPT ;

algorithm for an approximate solution to the k-motion-fr problem. The basic idea of the greedy
algorithm for k-motion-fr is to perform a sequence of steps as follows. In the n-th step, an FR
pair 〈fn , cn〉 is selected greedily from Fn ×Cn by executing the LNB algorithm (Algorithm 1),
where Fn = Fn−1 ∪ {cn−1}\{ fn−1} and Cn = Cn−1\{cn−1}. The process terminates until n = k or
Δ(〈fn , cn〉) ≤ 0. The latter condition means that the global optimum has been achieved before the
k-th step. Between the successive (n-1)-th and n-th steps, we need to update LNT, L2NT, Δ( fn−1),
and Δ(cn−1) according to 〈fn−1, cn−1〉 selected in the (n-1)-th step. The update procedure is as fol-
lows. First, we find reference locations whose LN (r )s overlap vsve , on which cn−1 is located. For
each of these reference locations r , we compute dnn (F , r ) − d (r , cn−1) based on Equation (2) or
Lemma 5.2. Second, LNT and L2NT entries associated with r , as well as Δ( fn−1) and Δ(cn−1), are
updated depending on whether nn(F , r ) is exactly fn−1 or not. Specifically, if nn(F , r ) = fn−1, we
update the σ+ (r−−−→vivj ) and σ− (r−−−→vivj ) values of edgesvivj ∈ LN (r ) ∪ L2N (r ), which is based on the

following lemma, and vivj entries are moved from LNT to L2NT if σ+ (r−−−→vivj ) ≤ 0.

Lemma 6.2. Given 〈f , c〉 and r such that nn(F\{ f } ∪ {c}, r ) = c , for vivj ∈ LN (r ) ∪ L2N (r ), if

vivj is still inside the new local and sub-local networks of r , σ+ (r−−−→vivj ) and σ− (r−−−→vivj ) are updated as
σ+ (r−−−→vivj ) − (σ− (r−−−→vsve ) + d (c,ve )) and σ

− (r−−−→vivj ) − (σ− (r−−−→vsve ) + d (c,ve )), where c is on vsve .

Furthermore, if nn(F , r ) � fn−1, we remove vivj ∈ L2N (r ) from L2NT, as edges between c and
nn(F , r ) are as new L2N (r ). The σ+ and σ− values in LN (r ) are updated, and the edges whose
σ+ ≤ 0 are moved from LNT to L2NT. Third, similar to the first two steps, we update LN (r ) and
L2N (r ) of each r whose L2N (r ) overlaps vsve . Fourth, we update G (V ,E) by dropping f and
inserting c as a facility. Finally, for r ∈ rnn(F , f ), we expand network paths from 2nn(F , r ) toward
the new sub-nearest facility to update LN (r ) and L2N (r ).

7 COST ANALYSIS

This section conducts theoretical study of the proposed methods: straightforward, LNB, and EN.
The straightforward method described in the very beginning of Section 5 iteratively checks FR

pairs based on Theorem 4.6. The complexity is O ( |F | · |C | · |R | · |V | log |V |).
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Table 2. Real Facilities of CA and BJ

CA |F | BJ |F |
Post Offices(PO) 800 Cafes(CF) 1,500
Gas Stations(GA) 800 Gas Stations(GS) 1,500

Subway Restaurants(SU) 1,600 Logistics(LO) 2,500
ATMs(AT) 1,600 Parking Stations(PK) 2,500

LNB pre-computes dnn (F , r ) and d2nn (F , r ) for reference locations, and the cost is O ( |R | ·
|V | log |V |). The best case occurs when each reference location has its sub-nearest facility on the
same edge, then both LNT and L2NT contain |R | records. In the worst case, if there are only two
facilities, each reference location needs to traverse massive edges, then the two tables are with
|E | · |R | records. On the other hand, the running cost of LNB only depends on the number of en-
tries, say γ , visited in LNH . In practice, only a limit number of edges are checked—that is, γ � |E |.
Because the evaluation of Δ(〈f , c〉) is only based on the floating-point operation, its running cost
can be regarded as O (1). Hence, the complexity of LNB is O (γ ).
As the network is extended by candidates as extra vertices via the Dijkstra algorithm, the time

complexity of EN is simply O ( |R | · ( |V | + |C |) log( |V | + |C |)). For space complexity, CAT and FAT
are O ( |C |) and O ( |F | · |C |). Note that only the candidates c ∈ C ′ whose related 〈f , c〉 pairs have
offset relationship are stored in FAT, then actually |C ′ | � |C |. Hence, the space cost of FAT is
acceptable.
In summary, as far as query efficiency is concerned, we have LNB � EN � straightforward.

Our experimental study shall validate this.

8 PERFORMANCE STUDY

In this section, we investigate the performance of our proposed solutions from a variety of aspects.

8.1 Experimental Setup

Datasets. We use two real road networks: California (CA) [11] and Beijing City (BJ).6 CA con-
tains 21,693 bidirectional edges and 21,047 vertices. BJ consists of 433,391 unidirectional edges and
171,504 vertices. Table 2 shows the real datasets of facilities for CA7 and BJ. Facilities in each group
are randomly chosen from respective datasets. GA and GS are used for CA and BJ, respectively, in
the following experiments unless explicitly stated otherwise.
We conduct experiments on real and synthetic datasets of users. The real users data of BJ is

available from Zheng et al. [32]. There are 136,686 sample points for each user on average. For CA,
we use the discrete check-in data8 made by 26,619 users. By filtering out those who have fewer
than 20 check-ins, we pick 9,656 users and the average number of check-ins is about 125. The
presence probabilities for reference locations of each user are skewed, where the differences be-
tween the maximum andminimum presence probabilities are 0.278 (CA) and 0.367 (BJ) on average.
We generate synthetic data with larger cardinalities following the feature of real data to investi-
gate the scalability of our proposed solutions. Specifically, we synthesize 1 to 6 reference locations
with proportions 5%, 20%, 35%, 25%, 10%, and 5% for each user, the number of which ranges from
20k to 100k. Moreover, we use two schemes, Random (R) and Uniform (U), to generate presence

6Road network and facilities of BJ are available from Cui et al. [4].
7Post offices are available from Li et al. [11] and others are downloaded from http://www.poi-factory.com/search/pfc/

california.
8Check-in data in California are obtained from http://snap.stanford.edu/data/.
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probabilities of reference locations. For the former, probabilities are distributed randomly. For Uni-
form, if a user has n reference locations, the presence probability at each location is uniformly set
as 1/n. Considering daily activity areas of a user are unlikely to be far apart (e.g., as discussed in
Xia et al. [25], trip radii are mostly between about 10 and 20 km), reference locations of a user are
confined and randomly distributed in a 30 km range. We choose 50, 100, 200, 400, and 800 loca-
tions within the geographical domain for candidates at random.9 Unless specified otherwise, the
default values of |C |, |U | and the distribution of presence probability are 200, 60k, and Random,
respectively.

Algorithms. We evaluate the following algorithms and semantics in our experiments; all are
implemented in C++ and tested on a 3.2-GHz quad-core machine with 32 GB of RAM10

• EN: The extended network method described in Algorithm 2.
• LNB: The local network–based method described in Algorithm 1. LNT and L2NT are loaded

in main memory.
• RID: The state-of-the-art technique for solving the FR problem in Euclidean space [16],

which is called the replacement influence distance (RID). We adapt the technique to solve
motion-fr in a road network for comparison. Given F , the nearest (respectively, sub-
nearest) facility circle of a user u at r is a circle centered at r with radius dnn (F , r ) (re-
spectively, d2nn (F , r )). Obviously, as d (�2, �1) is the lower bound of dε (�2, �1), any candidate
that lies outside the (sub-)nearest facility circle of r cannot affect r . In other words, only r
whose (sub-)nearest facility circle encloses the substitute candidate may contribute to ED;
otherwise, it can be pruned. Additionally, the replacement influence circle (RIC) is a circle
centered at f with radius maxr ∈rnn (F ,f ) {dnn (F , r ) + d2nn (F , r )}. Once a candidate c is out-
side the RIC of f , c and f respectively affect different sets of reference locations. We regard
reference locations with presence probabilities as static objects with weights. Similar to Qi
et al. [16], C , RICs, and (sub-)nearest facility circles are indexed by respective R-trees (in
main memory), and the spatial join scheme is used. The index structures are also adapted
on the basis of a greedy heuristic such that it can update when an FR pair is conducted.

• RID-Q: Only the query part of the RID method (without the index part).
• M-FR: The motion-fr semantics, which is proposed in this article to evaluate ED.
• S-FR: The static Min-dist-based FR semantics [16] to evaluate average distance. As static

Min-dist-based FR requires that a user be represented by a single position, we pick and
only consider the reference location with the highest probability for each user.

As discussed in Section 7, the cost of the straightforwardmethod on network traversal is propor-
tional to the product of cardinalities of facilities and candidates. For instance, when we run it with
50 candidates and a PO facility group on the CA road network, it takes nearly 4 days to complete.
In contrast, EN takes only tens of seconds. Hence, the straightforward method is impractical, and
we omit it in our experiments. In the following, we will compare the methods listed previously
(i.e., EN, LNB, RID, and RID-Q) mainly on execution time, and the changing trend of ED is also
evaluated. The impacts of different parameters (e.g., |C |, |F |, |U |, spatial distribution) on efficiency
are examined respectively. For the two FR semantics, we investigate the differences on selected
FR pairs and ED values. The reasons behind the phenomena in all experiments are analyzed in
detail.

9For the synthetic objects that are not exactly located on roads, we shift them to the closest point of on the road network.
10Source codes are available from https://github.com/lihuixidian/frost-tist/.
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Table 3. Comparison between motion-fr and Static Min-dist-Based FR Semantics

Real Synthetic

F df % dc % EDM-FR EDS-FR gap % df % dc % EDM-FR EDS-FR gap %

CA

PO 412 29.8 145 10.5 12,967 7,065 45.5 173 12.5 459 33.2 15,469 12,887 16.7

GA 245 17.7 117 8.4 7,334 5,092 30.6 805 58.3 74 5.4 37,051 15,515 58.1

SU 702 50.8 346 25.1 1,259 –5,074 n/a 218 15.8 98 7.1 44,042 –3,256 n/a

AT 354 25.6 265 19.2 2,351 –4,966 n/a 311 22.5 460 33.3 70,074 13,224 81.1

BJ

CF 62 23.8 42 16.4 131 106 19.2 62 23.8 24 9.4 9,731 5,085 47.7

GS 79 30.7 21 8.2 21 18 11.2 89 34.4 8 3.2 749 695 7.2

LO 90 34.6 24 9.1 41 35 13.8 84 32.3 7 2.7 1,747 1,014 41.9

PK 39 14.9 5 2.1 108 97 9.5 28 10.7 8 3.2 10,424 9,815 5.8

8.2 Experimental Results

Comparison with static Min-dist-based FR. We first study the results of optimal FR pairs that are
mined under M-FR and S-FR semantics. We compare the Euclidean distances (more spatially in-
tuitive than network distances) between the obsolete facilities (respectively, selected candidates)
chosen by M-FR and S-FR, denoted by df (respectively, dc ), as well as the proportions with re-
spect to the whole ranges of CA (1,380 km) and BJ (259 km). Moreover, we also evaluate EDs of
the optimal FR pairs for the two semantics, denoted respectively by EDM-FR and EDS-FR. The gaps

between EDM-FR and EDS-FR are also given in ratio as EDM-FR−EDS-FR

EDM-FR
. To eliminate the influence of

cardinality on results, we make the same cardinality for facility sets in CA (800) and BJ (1,500). We
use 20k synthetic and real users for comparison. The results are reported as the averages for 20
different candidate groups, each of which contains 100 randomly generated candidates.
As reported in Table 3, the optimal FR pairs differ greatly in both distances and EDs, which

means that users’ movements really have an impact on results. The df values are mostly further
than those for dc , which may have reasons from two aspects. On one hand, the distribution of
existing facilities makes superior candidates be within a relatively fixed area and more profitable
than in other regions. On the other hand, as facility sets are with larger cardinalities than candi-
date sets, inferior facilities might be with a relatively higher proportion and scattered in several
regions. We also observe great differences of dc values between real and synthetic users, which
means that the different distributions of users (i.e., synthetic users are distributed more uniformly
than real ones) significantly affect the results. From aspect of ED, motion-fr makes significantly
better decisions than static FR, although the margins vary widely due to different distributions
of facility groups. Comparing the ED gaps for real and synthetic users, it reveals that the more
similar the distributions of users and facilities are, the smaller gaps there exist. Note that for Sub-
way restaurants in CA, the results selected by static FR even lead to negative returns for both real
and synthetic users. That implies that movements of users are determinant in certain application
scenarios.
In addition, we outline the efficiency comparison between the proposed solutions and RID (RID-

Q). Following the default experiment settings, Table 4 gives an overview of execution time for the
methods. Based on index structures, the querying time of LNB is reduced by orders of magnitude
compared to RID-Q. For online methods, EN mostly outperforms RID.
In the following experiments, we will study the impacts of different parameters on performance.

Effect of |C |. In this part, we investigate the performance by varying the number of candidates. As
shown in Figure 9, LNB shows the best scalability, and it is superior to RID-Q with offline index
structures. The running time of LNB is within milliseconds regardless of |C | and road datasets,
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Table 4. Comparison on Running Time among

Algorithms (ms)

CA BJ

Real Syn. Real Syn.

Index Based
LNB 1 2 1 2

RID-Q 218 6,951 15 6,029

Index Free
EN 843 23,963 827 61,423

RID 1,030 31,226 671 68,545

Table 5. Expected Change of Total Distance (km)

|C |=50 100 200 400 800

UNIFORM(CA) 75,096 104,007 116,337 113,530 119,183

RANDOM(CA) 70,632 97,082 109,876 106,983 112,352

diff.(CA) % 6.32 6.53 5.88 6.12 6.08

UNIFORM(BJ) 2,292 2,803 2,566 2,810 2,492

RANDOM(BJ) 2,182 2,662 2,450 2,672 2,376

diff.(BJ) % 5.06 5.30 4.73 5.15 4.87

Fig. 9. Effect of |C |.

Fig. 10. Effect of |F |.

as the cost is only relevant to the lookup process and numeric computation of LNT and L2NT
without network retrieval. The reason RID (RID-Q) is not as efficient as in Euclidean space is
twofold. First, the pruning power of the (sub-)nearest facility circle and RIC declines for network
distance. Second, the efficiency is mainly determined by the shortest path evaluation that is more
costly compared to Euclidean distance computation. In online scenarios, EN is better than RID in
most cases, except for the case of real users in BJ. The reason is, for a relatively small number of
users, that the overhead of FAT significantly offsets the query efficiency of EN. That is why the
gaps between EN and RID become wider as |C | grows in Figure 9(c).
ED values mostly grow with the increase of |C |, which means that the more widely candidates

are distributed, the higher probability a superior choice exists in C . This indicates that the geo-
graphical distributions of users’ movements and facilities determine the optimal candidate loca-
tion. The cases that candidate sets with lower cardinalities lead to larger EDs occur sporadically
on account of the randomness of generated candidates.

Effect of |F |. In this set of experiments, we study the effect of the number of facilities. To keep
consistent geographical distribution, we randomly choose four groups from GA (CA) and GS (BJ).
The cardinalities are 600, 800, 1,000, 1,200 (GA) and 600, 900, 1,200, 1,500 (GS), respectively. As
shown in Figure 10, except for LNB, the running cost slightly drops with the increase of |F | for
the other methods. This is because LNB only depends on float-point computation, whereas the
others require network traversal. As more facilities lead to shorter network paths on average, the
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Fig. 11. Geographical distribution of facilities.

Fig. 12. Effect of geographical distribution.

(sub-)nearest facility circles are smaller. Hence, more FR pairs can be pruned, and fewer network
traversals are needed.
From the ED results, both in CA and BJ, we find an interesting phenomenon: There seems to

be a cardinality threshold of F . When |F | is above the threshold (about 1k and 900 for CA and BJ,
respectively), ED values drop dramatically. As facility sets that are chosen from the corresponding
datasets with different cardinalities follow the same geographical distribution, the reason may be
as follows: Once |F | is below the threshold, many users have to travel significantly farther. In
contrast (i.e., above the threshold), a large proportion of users cannot benefit from more facilities.
That means, for given users, that it is unnecessary and even wasted to operate too many facilities
simultaneously.

Effect of geographical distribution in F . We also explore the effect of the geographical distribution
of facilities. The two facility groups in BJ as shown in Figure 11(c) and (d) have the same cardinality,
whereas their distributions are entirely distinct: Gas Stations are relatively uniform, whereas Cafes
are skewed. This results in significant difference in both the costs and ED values of EN, RID,
and RID-Q. For LO and PK in Figure 12(c), EN involves a similar quantity of network traversal.
However, due to geographical distribution, the nearest facility circle and replacement influence
circle policies have different pruning powers. When the difference in distribution increases (e.g.,
CF and GS in BJ), the effect is enlarged, which results in the performance degradation of RID-Q.
Similarly, in Figures 11(a) and (b), GA is more skewed compared to PO. Due to the different

distributions, there exist huge gaps in time costs and ED values. As shown in Figure 12(a) and (b),
the results for real and synthetic datasets are opposite, and the difference in distribution of real
and synthetic users is the reason. The geographical distribution of real users is similar to that of
GA but differs from PO. That means that if the deployment of facilities is less in line with users’
movements, it is more needed to launch FR, and then users will benefit from shorter distances to
access facilities. In our opinion, this is the scenario where FR problems should be applied.

Effect of |U |. We investigate the scalability with respect to the cardinality of users. Figure 13 re-
ports that the results are qualitatively similar to Figure 9. LNB exhibits the best performance,
followed by RID-Q, EN, and RID. The cost mostly increases when the number of users (i.e.,
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Fig. 13. Effect of |U |. Fig. 14. Relocating k facilities.

Fig. 15. Effect of change in users’ locations.

reference locations) grows. LNB demonstrates stable performance and still finishes execution
within milliseconds.
Next, we study the index costs of LNB and RID. As RID needs to pre-compute dnn (F , r ),

d2nn (F , r ) for reference locations, Δ( f )s for facilities, and then to construct R-trees forC , RICs, and
(sub-)nearest facility circles, its index cost (RID-I in Figure 13) is more than EN. Constructing LNT
and L2NT (LNT&L2NT in Figure 13) takes around 40% extra time compared to EN. The reason is
twofold. First, the standard C++ hash map template class, utilized in implementation, repeatedly
re-allocates memory during expanding edges. Second, as the number of edges is large, the compu-
tation of σ+, σ−, offset, and hash keys consumes some time. In short, LNB has a much better query
efficiency, whereas RID has a shorter index time, and RID is worse than EN for online scenarios.

Effect of change in users’ locations. Next, we study whether changes in partial reference loca-
tions of some users actually have impact on selected FR results. To this end, we choose 500 gas
stations in CA as existing facilities that serve users. Following the geographical distribution of the
real datasets of users, we randomly pick 100 gas stations as candidates, which are not overlapped
with the selected facilities. We use two schemes to simulate the change. First, we choose one and
three center locations in CA as new central business districts or entertainment districts that are
attractive to users. As shown in Figure 15(b) and (c), the red rectangles indicate the centers. Then
we randomly pick 10%, 30%, and 50% reference locations and redeploy them around the centers
following Gaussian distribution. Second, we uniformly redeploy 10%, 30%, and 50% reference lo-
cations in CA.
Figure 15 illustrates the optimal FR pairs for original reference locations of real users and those

for the aforementioned schemes. Compared to Figure 15(a), the locations of both obsolete facilities
and candidates in Figure 15(b) through (d) are different, which means that even if a small part of
users (10%) change some of their frequent activity areas, the results will still be influenced. This
observation is exactly in line with our motivation that movement history should be taken into
account for FR. Since the experiment results on 30% and 50%, as well as other facility datasets, are
qualitatively similar, due to space constraints, we do not report them in detail.
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Effect of the presence probabilities. Here we study the effect on resulting FR pairs in terms of
the presence probability distribution of reference locations. We compare for both CA and BJ the
ED differences between Uniform(U) and Random(R) presence probabilities on average by varying
|C |. As reported in Table 5, the optimal FR pair in CA gains larger reduction of average distance
than in BJ due to the larger geographical area of CA. Moreover, the proportion differences of EDs
between Uniform and Random are around 6% (CA) and 5% (BJ). In other words, the movements of
users, namely the skewed presence probabilities at reference locations, influence the result.

Effect of network scale. In this part, we briefly report the effect of network scale. As demonstrated
in the preceding experiments, except LNB, the running time in BJ is nearly one order of magnitude
longer than the counterpart in CA with respect to similar geographical distribution. As the scale
of BJ has a larger magnitude than that of CA, the scalability is in line with the theoretical analysis.
Note that if the geographical distribution of facilities is quite different (e.g., the skewed CF versus
the uniform GS in BJ), the time cost might deviate from the network scale.

Performance of k-MOTION-FR. We compare the greedy LNB and adapted greedy RID to solve the
k-motion-fr problem. We set k = 10. Figure 14 reports the ED value and the time of querying and
updating index structures. For greedy LNB, the time to update LNT and L2NT is more than one
order of magnitude shorter compared to the construction time. For RID, the update time is tens of
milliseconds, whereas the decrease of query time is quite limited. As greedy LNB has a significantly
shorter total time than greedy RID, it is a feasible and superior solution to k-motion-fr.

9 CONCLUSION

In this article, we introduce a novel FR problem called motion-fr that exploits, for the first
time, movement history of users for relocating facilities. We utilize reference locations to model
users’ movement history and present a framework called frost to address it. frost comprises
two algorithms: index based and index free. The first algorithm LNB is designed to address the
problem efficiently when facilities and users are known a priori. The second algorithm, namely
EN, solves the problem from scratch without assuming any knowledge of facilities and users
ahead of time. We further generalize the problem to k-motion-fr, which is NP-hard, and devise
an approximate solution by extending LNB. Extensive experiments on both real and synthetic
datasets demonstrate the superiority of our proposed approaches compared to state-of-the-art
FR techniques in efficiency and effectiveness. As part of future work, we plan to study FR un-
der competition with other service providers, which might further improve the availability of our
research.

APPENDIX

A PROOFS

A.1 Proof of Lemma 4.5

Observe that a user u is present at r ∈ L(u) with p (r ), and for all |W | possible worlds, r exactly
occurs in p (r ) × |W | possible worlds. For the possible worldsW ′ ⊆W in which a specific r occurs,
namely rw = r if rw ∈W ′,

∑
rw ∈W ′ dnn (F , r

w ) × Pr [l (U ) = w] = dnn (F , r ) × p (r ). Taking into ac-
count all r ∈ L(u), E[dnn (F ,L(u))] = ∑r ∈L(u ) (dnn (F , r ) × p (r )).

A.2 Proof of Theorem 4.6

If we replace an obsolete facility f with a substitute at candidate location c , E[dnn (F\{ f } ∪
{c},L(u))] = ∑r ∈L(u ) (dnn (F\{ f } ∪ {c}, r ) × p (r )). According to Lemma 4.5, we can transform the
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computation of ED from the perspective of possible worlds to reference locations as follows.

Δ(〈f , c〉) =
|W |∑
j=1

Δw j
(〈f , c〉) × Pr [l (U ) = w j ]

=

|W |∑
j=1

m∑
i=1

(dnn (F , r
w j

i ) × Pr [l (U ) = w j ] − dnn (F\{ f } ∪ {c}, rw j

i ) × Pr [l (U ) = w j ])

=

m∑
i=1

(E[dnn (F ,L(ui ))] − E[dnn (F\{ f } ∪ {c},L(ui ))]).

A.3 Proof of Lemma 5.1

With the substitution of R upon Lemma 4.5 and Theorem 4.6, Δ(〈f , c〉) can be rewritten as∑
r ∈R δr (〈f , c〉). According to the definitions, it is self-evident that Rc+, Rc−, Rf and R

f ∪c are

mutually exclusive and R = Rc+ ∪ Rc− ∪ Rf ∪ Rf ∪c . Hence, we can compute their EDs separately

and then accumulate them for the total. As
∑

r ∈R
f ∪c δr (〈f , c〉) = 0, R

f ∪c can be ignored, and thus

Δ(〈f , c〉) = ∑r ∈Rc+∪Rc−∪Rf δr (〈f , c〉).

A.4 Proof of Lemma 5.2

According to the definition of critical location, we have d (r ,vi ) + d (vi , �c ) = d (r ,vj ) +
d (�c ,vj ) and d (vi , �c ) = d (vi ,vj ) − d (�c ,vj ), then d (�c ,vj ) =

1
2 (d (r ,vi ) + d (vi ,vj ) − d (r ,vj )).

When d (c,vj ) ≥ d (�c ,vj ), as c1 in Figure 8(d), it locates on r−−−→vivj , then Equation (2) holds. If

d (c,vj ) < d (�c ,vj ), as c2 in Figure 8(d), it is reached from vj , namely r−−−→vjvi . As the distances from
r to locations on vivj are symmetrical with �c , we can find the symmetry location c ′2 of c2 such
that d (r , c ′2) = d (r , c2). As Equation (2) holds for c ′2, we can compute δr (〈f , c2〉) = δr (〈f , c ′2〉) =
(σ− (r−−−→vivj ) + 2 × d (�c ,vj ) − d (c,vj )) × p (r ).

A.5 Proof of Lemma 6.2

As nn(F\{ f } ∪ {c}, r ) = c , thus dnn (F\{ f } ∪ {c}, r ) = d (r , c ). According to the definition

of σ+ (r−−−→vivj ) and Equation (2), we have σ+ (r−−−→vivj )′ = d (r , c ) − d (r ,vi ) = dnn (F , r ) − d (r ,vi ) −
(dnn (F , r ) − d (r , c )) = σ+ (r−−−→vivj ) − (σ− (r−−−→vsve ) + d (c,ve )), where σ

+ (r−−−→vivj )′ is the updated value

of σ+ (r−−−→vivj ) after 〈f , c〉 is conducted. Similarly, σ− (r−−−→vivj )′ = σ− (r−−−→vivj ) − (σ− (r−−−→vsve ) + d (c,ve )).
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