
Information Sciences 463–464 (2018) 1–20

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Place Your Next Branch with MILE-RUN: Min-dist Location

Selection over User Movement

Jiangtao Cui a , Meng Wang

a , Hui Li b , ∗, Yang Cai a

a School of Computer Science and Technology, Xidian University, Xi’an 710071, China
b School of Cyber Engineering, Xidian University, Xi’an 710071, China

a r t i c l e i n f o

Article history:

Received 3 August 2017

Revised 8 April 2018

Accepted 12 June 2018

Available online 13 June 2018

Keywords:

Location selection

User movement

Spatial database

Road network

a b s t r a c t

Due to the wide spectrum of applications, the Min-dist location selection problem has

drawn much research attention in spatial database studies. Given a group of existing lo-

cations of a specific kind of facility, Min-dist problem aims to find the optimal location

from series of candidate places to establish a new facility such that the average distance

between users and their respective nearest facilities can be minimized. Although plenty of

efforts have been proposed to address Min-dist problems, they all assume that users are

stationary. Unfortunately, in practice, objects (e.g., people, animals) are mobile in various

scenarios. Due to the movements of users, it is non-trivial to identify an optimal candi-

date, where none of existing solutions is applicable. Motivated by that, in this paper we

take into account the mobile factor and present the first effort on a generalized Min-dist

problem, called M in-d I st L ocation S E lection ove R U ser Moveme N t (mile-run). To address

the efficiency issue caused by user movement and road network, based on a reference lo-

cation transformation, we present two groups of algorithms, index-based and index-free

ones. The first group answers mile-run efficiently with the help of spatial locality based

index structures, and fits the case where facilities and users are known apriori, while the

second group solves the problem from scratch. Extensive experiments are conducted on

both real-world and synthetic datasets, the results of which demonstrate that our algo-

rithms are more efficient compared to the baseline method by orders of magnitude.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Min-dist location selection, as discussed in [14] , is an important spatial decision problem that has a wide spectrum of

applications, such as marketing, urban planning, logistics, location-based services, etc. Informally, given a set U of users and

a set F of existing locations for a specific kind of facility, the Min-dist problem selects a location c from a set of candidates,

namely C , for establishing a new facility so that the average distance between users and their respective nearest facilities is

minimized.

Several techniques [14,15,26,30] have been proposed for addressing Min-dist location selection problems, and all these

works assume that each user is stationary such that one can be represented as a single point in a two-dimensional space.

Unfortunately, with the proliferation of mobile devices, this assumption may not hold in various applications where users
∗ Corresponding author.

E-mail addresses: cuijt@xidian.edu.cn (J. Cui), wamengit@sina.com (M. Wang), hli@xidian.edu.cn , lihu0 0 06@e.ntu.edu.sg (H. Li), wolfcyang@163.com (Y.

Cai).

https://doi.org/10.1016/j.ins.2018.06.036

0020-0255/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2018.06.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.06.036&domain=pdf
mailto:cuijt@xidian.edu.cn
mailto:wamengit@sina.com
mailto:hli@xidian.edu.cn
mailto:lihu0006@e.ntu.edu.sg
mailto:wolfcyang@163.com
https://doi.org/10.1016/j.ins.2018.06.036

2 J. Cui et al. / Information Sciences 463–464 (2018) 1–20

Fig. 1. mile-run framework.

are not static and traveling from one place to another every day. In these scenarios, where a moving user can be modeled

as a set of spatial positions instead of a single one [21] , none of existing effort s in this field can be applied.

Consider the scenario of sharing economy which is taking off in recent years. A car-sharing company (e.g., Autolib, Car2Go)

wishes to improve its market share by optimizing the existing service network, namely the parking and charging stations. In

order that vehicles can be more accessible to users for competitive purposes, the company needs to choose from a collection

of candidate places an optimal location which, if a new station is built there, minimizes the average pick-up distance for

users. Suppose that a user is mobile, then she would probably take a car close to where she were present at. As a result,

for a more effective solution, the evaluation of the average distance cannot be solely attributed to a single location as all of

the positions that represent a user’s movement play a role.

Another example is franchise chain (e.g., McDonald’s, 7-eleven). In order to optimize customer experience, the company

plans to build a new store on the basis of existing service branches, so as to minimize the average travel cost to attract

more customers. As mobile customers would probably purchase in stores nearby where they were present at, similar to the

previous example, their movements have to be taken into consideration in the distance evaluation.

To address the Min-dist problem in the mobile setting, in this paper we present a novel problem, namely M in-d I st

L ocation S E lection ove R U ser Moveme N t (mile-run), which addresses the aforementioned limitation that existing Min-dist

techniques suffer from. As users’ travels between spatial locations in the real-world are usually confined to road network,

we focus on the road network distance. Accordingly, we assume both facilities and users are located on a road network

graph G (V, E), where V and E denote the sets of vertices and edges, respectively. Additionally, as stated in [14,15] , in many

real applications, companies can only choose from a finite number of candidate places for rent or sale in a region or on a

road, and we follow this setting in the paper. As a result, the mile-run problem can be intuitively defined as follows. Given

a set U of mobile objects (e.g., users, customers), a set F of existing locations for a specific kind of facility (e.g., stations,

chain stores) and a network graph G (V, E), the mile-run problem returns the optimal location among a set C of candidate

ones for establishing a new facility so that the average network distance between all objects and their respective nearest

facilities is minimized.

Comparing with existing Min-dist location selection solutions, there are three challenges in the mile-run problem. Firstly,

a moving object is described by a set of positions. In addition to the large amount of positions, which may lead to costly

computation, taking every position into account would be inappropriate as some positions are not/poorly contributive for

finding the optimal place to establish the new branch. For instance, there may be positions with GPS errors or visited by

a user purely occasionally, etc. Hence, it is vital to the evaluation of average distance by eliminating these noisy positions.

Secondly, even if we have the knowledge of the worthwhile positions for each moving user, it is non-trivial to determine

which facility a specific user will visit for service as she is probable to be present at any one of these positions. As existing

solutions to the Min-dist problem are single point based, they cannot handle the multiple point scenario. Accordingly, the

average distance is difficult to be evaluated under the Min-dist criteria. Finally, the computational overhead is extremely

expensive due to the massive shortest network distance computations over users, existing facilities and candidate locations,

which makes the Euclidean distance based Min-dist techniques unavailable.

In this work, we present a systematic solution, illustrated in Fig. 1 , to address the above challenges introduced by the

mile-run problem. The framework consists of three major components as follows.

J. Cui et al. / Information Sciences 463–464 (2018) 1–20 3

In the first component, we model user movement with the concept of reference locations [11] . Each reference location is

one of the activity places that a user frequently shows up every day and thus are worth considering. With the help of kernel

method [24] , we can identify for each user multiple reference locations with different present probabilities.

The second component formalizes the Min-dist problem in the mobile scenarios. In light of the uncertainty of move-

ments, users that are probably present at any one of the reference locations can be modeled following possible world se-

mantics [2] . Based on the criteria of existing Min-dist problem (i.e., stationary objects), the optimal candidate with respect

to a specific possible world can be obtained. As any possible world may occur, all possible worlds have effects on the result

and the average distance is in fact a random variable accordingly. Hence, candidates can be ranked according to the expected

average distance over all possible worlds.

In the third component, we systematically solve the proposed mile-run problem in two steps. (1) Notably, the amount

of possible worlds is huge due to the massive number of users, such that it is impractical to explore all of them, which ends

up with exponential complexity. To avoid the exhaustive enumeration, a novel method from the aspect of reference location

is designed, which can be effectively leveraged to reduce the ranking process from exponential complexity to linear one.

(2) Furthermore, as shown in Section 7 , city road networks usually have large volumes of vertices and edges, which results

in costly network traversals in finding the optimal candidate for massive users. To address this problem, with the help of

spatial locality index techniques, we propose two solutions, network nearest facility circle (NNFC) based and local network

based, both of which provide superior efficiency. The former method focuses on only those reference locations affected by

certain candidates. For the latter, not any network traversal is needed for the selection of candidates. On the other hand, we

present an alternative solution based on network extension scheme for addressing mile-run from scratch, in the case that

existing facilities and users are unknown in advance. In summary, our major contributions are outlined as follows.

• To the best of our knowledge, this is the first effort to formalize the problem of Min-dIst Location SElection oveR User

MovemeNt (mile-run). Compared to existing works, mile-run is a generalized Min-dist problem, which takes into ac-

count the movements of objects.

• Depending on whether index can be used, three novel solutions are developed to address the mile-run problem effi-

ciently and accurately under different cases.

• Comprehensive experiments are conducted on both real-world and synthetic data over two real road networks. The

results demonstrate that, comparing to a baseline method, our proposed solutions significantly improve the efficiency by

orders of magnitude.

The rest of this paper is organized as follows. We give a brief overview of related work in next section. In Section 3 ,

we discuss user movement and model mobile objects using reference locations. Section 4 formally gives the definition of

the mile-run problem. We propose our solutions to mile-run in Section 5 . Section 6 analyzes the cost of the proposed

methods. Section 7 reports the empirical study and the last section concludes this paper. A set of frequently-used notations

and acronyms are listed in Table 1 .

2. Related work

There has been increasing research effort s to address the location selection (LS) problem due to its importance in real-

life applications. They are generally classified into two major categories: Min-dist and Max-inf . The former problem aims to

find a location, if a new facility is built there, minimizing the aggregate distance from each user to her closest facility. The

latter one returns an optimal location for establishing a new facility such that it can attract the most number of users. In

this section, we briefly review these LS efforts over the spaces of different distance metrics, e.g., L p -norm space and road

network.

2.1. Min-dist location selection

Zhang et al. [30] introduced the Min-dist LS problem in continuous L 1 -norm space. Using lower-bound estimators for

pruning, they first identified a set of candidate locations from the given region and then divided them progressively until

the answer is found. Qi et al. [14] studied a similar problem given an extra set of candidate locations for establishing a new

facility. They developed several methods, with or without additional index structure, to solve the problem on L 2 distance

metric. In [15] , the authors further extended the Min-dist problem in which a new facility is set up elsewhere to replace an

existing one. Unlike the case for L p -norm distance, where the aim is to decrease the amount of candidates to be calculated,

the key challenge for road network distance is to reduce the number of users that require network traversals, then these

works are not suitable for solving the proposed mile-run problem in this paper.

Xiao et al. [26] proposed a unified framework utilizing the divide-and-conquer paradigm to address both Min-dist

and Max-inf LS problems on continuous road edges. They first computed Attraction Set based on Attractor Distances of

users. Road network was then split into sub-networks, among whose local optima the global answer can be derived. Chen

et al. [3] studied MaxSum (i.e., Max-inf) and MinMax (different from Min-dist) LS problems following the continuous set-

ting. They presented a pruning technique based on Nearest Location Component (an alias of Local Network [7]). They further

studied two extensions, including multiple-location and on three-dimensional road networks. As discussed in [15] , however,

in many real applications, we can only choose from some candidate locations for rent or sale rather than anywhere on roads.

4 J. Cui et al. / Information Sciences 463–464 (2018) 1–20

Table 1

Notations and Acronyms.

Notation & Acronym Definition

G (V, E) road network with vertices V and edges E

d (� 1 , � 2) shortest network distance from location � 1 to � 2
d ε(� 1 , � 2) Euclidean distance between locations � 1 and � 2
U, F, C, W sets of mobile users, existing facilities, candidate locations and all possible worlds

u, f, c, w a user, a facility, a candidate and a possible world, respectively

nn (F , �) network nearest facility of � chosen from F

nnd (F , �) the distance between � and nn (F , �)

r a reference location

L (u) the reference locations of u

l (·) the reference location where “ · ” currently appears at

| F |, | C |, | W |, n cardinalities of F, C, W and L (u), respectively

m , | U | interchangeably used as the cardinality of U

Pr[l(u) = r] the probability that u presents at r

Pr[l(U) = w] the probability that w occurs

E [nnd (F, L (u))] the expected nearest facility distance of u

�w (c) reduction of total distance in w if c is built

�(c) expected reduction of total distance for c

NNFC (F, r) the network nearest facility circle of r with F

δr (c) expected reduction of nearest facility distance of r if c is built

δ+
r (c) , �+ (c) upper bounds of δr (c) and �(c)

R + c , R
−
c set of reference locations (not) affected by c

v i v j , r
−−→ v i v j an edge with endpoints v i and v j , and a directed edge with respect to r

σ+ (r
−−→ v i v j) , σ−(r

−−→ v i v j) maximum and minimum reductions of distance on r
−−→ v i v j for any candidate

�+ (v i v j) ERD upper bound of edge v i v j
LS Location Selection

ERD Expected Reduction of total Distance with respect to a candidate c

NSJ the Network nearest facility circle based Spatial Join method

SJ the Spatial Join process of the NSJ method

MBR Minimum Bounding Rectangle

LNB the Local Network Based method

LNT Local Network Table used in the LNB method

EN the Extended Network method

CAT Candidate Accumulative Table used in the EN method

AP Average Precision

This means that in general the answers of these approaches may not even be contained in given candidate locations. In ad-

dition, based on the empirical comparison with our proposed algorithms (detailed in Section 7), the solutions for continuous

setting are not as efficient as for specific candidate locations. Hence, they are not applicable in our case.

Papadias et al. [12] focused on another kind of Min-dist problem, called Aggregate Nearest Neighbor (ANN), which con-

siders only existing facilities without building any new one. The authors proposed methods and the corresponding ex-

tensions for processing both memory-resident and disk-resident ANN queries on L 2 distance metric. There exist more ef-

forts [17,27,29,32] in road network. To solve the problem, Yiu et al. [29] presented techniques utilizing network connectivity

information and spatial locality. In [32] , network Voronoi diagram (NVD) was firstly applied for addressing ANN query. Us-

ing the look-up tables of NVD generated in advance, network retrieval is then avoided. Yan et al. [27] extended the problem

where all the locations on roads are candidates. They designed a two-phase convex-hull-based pruning technique for both

exact and approximate solutions. Sun et al. [17] studied Merged ANN query, which takes into account an extra set of candi-

date users. As these effort s are orthogonal to our problem setting, they cannot be applied to address mile-run .

2.2. Max-inf location selection

Xia et al. [25] studied a typical Max-inf problem in L 2 space. With a novel distance metric called minExistDNN, the

authors developed a branch and bound method to find top-k optimal facilities. Huang et al. [9] investigated further with

existing facilities. Two pruning algorithms were exploited utilizing the concept of influential region. Du et al. [5] worked on

weighted objects under L 1 distance metric. They presented plane-sweep algorithms based on aSB-tree and Virtual OL-tree

for query efficiency. Wong et al. [23] studied MaxBRkNN problem that finds an optimal region instead of a location. They

took advantage of region-to-point transformation to tighten the L 2 continuous search space. In [22] , the authors extended

the problem in three-dimensional and L p -norm metric spaces. Gao et al. [6] studied the problem on metric space, given a

region and a distance as additional constraints.

Besides [3,26] discussed above, Ghaemi et al. [7] also solved a Max-inf problem (MaxOSN) in road network based on a

novel spatial locality concept called Local Network. Specifically, the local network of a user u is a sub-network expanded

from u (i.e., by Dijkstra algorithm [4]) that contains all points on the network with a distance less than or equal to that

between u and her nearest facility.

J. Cui et al. / Information Sciences 463–464 (2018) 1–20 5

Apparently, Max-inf based techniques have a completely different optimization objective from our problem setting.

2.3. Efforts on mobile objects

Bespamyatnikh et al. [1] studied a Min-dist problem on mobile users. As they aimed to build a new facility without ex-

isting ones in L 2 plane, the presented algorithms, both for exact and approximate answers, cannot be applied for addressing

the mile-run problem.

Cheema et al. [2] modeled users under possible world semantics in L 2 space. They developed Normalized Antipodal

Half-Space to solve the PRNN problem. Wang et al. [21] presented a generalized Max-inf problem, called PRIME-LS, taking

movements of users into account. They proposed pruning rules on a novel distance measure to address the problem. As

these efforts focus on Max-inf, they are not suitable for our problem.

Shang et al. [16] studied R-PNN problem in road network, which finds an optimal candidate with the most reverse

nearest trajectories. Tang et al. [18] studied an opposite problem, k-NNT, that retrieves top-k trajectories with the minimum

aggregated distance to a set of locations. This kind of queries only consider the nearest sample point of a trajectory instead

of the whole movement, then they are also orthogonal to our problem setting.

3. Preliminaries

In this section, we first discuss the representation of mobile objects, and then introduce kernel method, which is em-

ployed to model the movements of users in our framework.

3.1. Mobile objects

In general, mobile objects (e.g., human beings, animals, etc.) are ubiquitous in many real-life applications. The movement

of a user is commonly represented in two ways: continuous case (e.g., trajectory [18]) and discrete case (e.g., check-ins

data [28]). The former case explicitly records every move of an object, while the latter one works in an implicit way, which

reflects activities at POIs (Point-of-interests) and movements between locations. For both cases, a moving user is modeled as

a set of spatial positions [21] (e.g., sampled points of a trajectory or check-ins at POI locations). Nevertheless, in addition to

the costly computation, taking every position into account in addressing LS problems is also inappropriate for effectiveness

issue, due to three kinds of valueless points: noisy, passing-by and outlier points. Noisy points result from data or GPS

errors, whereas the latter two are relevant to mobile characteristics. Compared to places where daily activities are conducted,

passing-by points are those places where a user does not spend any time except passing by. For outlier points, a user visits

there purely occasionally. Apparently, these positions are not/poorly contributive for deciding where is optimal to establish

the new branch. As a result, it is more reasonable to focus on the representative points, which can describe the frequent

activity areas of a user.

On the other hand, as discussed in [11] , moving users are closely associated with two major concepts: frequently appear-

ance at some place and staying for a duration. Incorporating the idea with Tobler’s First Law of Geography “Everything is

related to everything else, but near things are more related than distant things” [20] , two indications can be derived in LS

problems. Firstly, a user usually correlates to some reference locations [11] . Secondly, a user tends to conduct her activities

nearby the reference locations [28] .

In summary, it makes sense to identify reference locations from raw movement data, which help us get rid of the afore-

mentioned limitations and pave the way to capture daily activity places for handling mile-run problems.

3.2. Capturing reference locations

In order to find reference locations, we employ kernel method [24] . The original purpose of kernel method is to detect

home ranges of animals, and it has been widely used in a variety of domains [19] . In finding activity places for humans,

kernel method outperforms most traditional algorithms (e.g., time-distance cluster detection) in accuracy (the accuracy is up

to 92.3%) [19] , thus can provide more effective solutions to the mile-run problem. Additionally, kernel method is of flexible

form, thus can be used where simple parametric models are difficult to specify [24] . Accordingly, kernel method is more

suitable to our case where massive users are with different distributions in location, compared to the parametric methods.

In this study, we use the standard bivariate normal density kernel [24] to capture reference locations.

To capture reference locations of each user, in line with [11] , we also discretize the continuous space into grids and

evaluate the density for each of them. The top- p % (5% in this paper) grids with the highest density value are selected.

Inspired by reference spot [11] , in this paper, we aggregate the adjacent grids among the selected ones together to form a

series of separate grid groups. In each grid group, the peak grid with highest density is intuitively regarded as a reference

location. Moreover, the density accumulation of each group is normalized and further viewed as the probability that a user

appears nearby the corresponding reference location. For instance, Fig. 2 (a) and (b) illustrate positions (from check-in data)

of a user and the probabilities of grids calculated using kernel method. Based on kernel method and grid group strategy, the

valueless points discussed in Section 3.1 can be avoided and three of her reference locations are captured.

6 J. Cui et al. / Information Sciences 463–464 (2018) 1–20

Fig. 2. Capturing reference locations.

Notably, in practice, reference locations usually can be reached by road network, which means they locate on some edges

in a given road network graph G , otherwise, we assume a reference location locates at its nearest point in G . This assumption

is reasonable, as residential and office buildings may not exactly locate on roads in G .

4. MILE-RUN problem

In this section, we formally define the mile-run problem. Based on reference location, mobile objects are modeled fol-

lowing possible world semantics. Then candidate locations are ranked by expected distance over all possible worlds. We begin

by introducing some terminologies that are necessary for the formal definition.

A location � in this paper is a two-dimensional position on an edge in a given directed road network G (V, E), with a

geographical coordinate (i.e., latitude and longitude). Each directed edge in E is associated with a positive weight, which

represents travel distance or time cost, etc. Given any two locations � 1 and � 2 , the directed network distance (i.e., shortest

path distance) from � 1 to � 2 is denoted by d (� 1 , � 2), and d (� 1 , � 2) may not be equal to d (� 2 , � 1). Since the locations of existing

facilities (resp., candidates to deploy a new facility) are usually static and thus can be obtained precisely, we denote existing

facilities (resp., candidates) as a set of locations F = { f 1 , f 2 , . . . , f | F | } (resp., C = { c 1 , c 2 , . . . , c | C| }), where | F | (resp., | C |) is the

cardinality of F (resp., C). Given a location � and a set of facilities F , the network nearest facility of � with respect to F is

denoted as nn (F , �), and the network distance between them is defined as nnd(F , �) = d(nn (F , �) , �) . For ease of discussion,

in the following, directed network distance and network nearest facility are referred to as distance and nearest facility for

simplicity, respectively. If a new facility is built at candidate location c , the distance between � and her nearest facility is

nnd (F ∪ { c }, �). Obviously, nnd (F ∪ { c }, �) ≤ nnd (F , �).

To minimize the average distance between users and their respective nearest facilities, we have to identify her loca-

tion � first. However, as discussed in Section 3 , a mobile object u may be present at a set of n reference locations L (u) =
{ r 1 , r 2 , . . . , r n } . Let l (·) denote a reference location(s) where “ · ” is(are) present at, then l (u) ∈ L (u) and

∑ n
i =1 P r[l(u) = r i] = 1 .

This differs from the setting of classical Min-dist criteria, where each object has only a single location. How can we select

the Min-dist optimal location given that objects are mobile?

Considering the uncertain movements, users can be described following possible world semantics. Given a set of users

U = { u 1 , u 2 , . . . , u m

} , where m is the cardinality of U , each user u i is associated with reference locations L (u i), then a possi-

ble world w = (r w

1 , r
w

2 , . . . , r
w

m

) is a list of location instances with one instance for each user, where r w

i
∈ L (u i) . Assume the

reference locations of any user are independent with each other, then P r[l(U) = w] =

∏ m

i =1 P r[l(u i) = r w

i
] . Let W be all the

possible worlds, then | W | =

(| L (u 1) |
1

)
. . .

(| L (u m) |
1

)
=

∏ m

i =1 | L (u i) | . Obviously,
∑

w ∈ W

P r[l(U) = w] = 1 .

For a particular possible world, each user is associated with only a single reference location, which is in line with the

Min-dist problem setting. Hence, we can derive the reduction of average distance between users and their respective nearest

facilities, if a new facility is established on candidate location c ∈ C in a specific possible world.

Definition 1. Given a set of facilities F , a possible world w and a candidate location c , the reduction of total distance

between all the users U and their respective nearest facilities is defined as �w

(c) =

∑ m

i =1 (nnd(F , r w

i
) − nnd(F ∪ { c} , r w

i
)) . 1

Thus the reduction of average distance is �w

(c)/ m . Since the denominator m is the cardinality of users and is consistent

for every c ∈ C, �w

(c) can be an alternative to evaluate the reduction of average distance. Hence, the candidate location with

the maximal �w

(c) is the optimal one in w with respect to the Min-dist criteria.

As illustrated in Fig. 3 (a), there are two existing facilities (i.e., F = { f 1 , f 2 }), two candidates (i.e., c 1 , c 2) and three users

(i.e., U = { u 1 , u 2 , u 3 }), each of which has two reference locations. The numbers and arrows on the edge segments indicate
1 For clarity and brevity, we omit F and U in the representation, as they are regarded as default settings in definitions in this paper.

J. Cui et al. / Information Sciences 463–464 (2018) 1–20 7

Fig. 3. Reduction of total distance.

the weights and directions. In this paper, the proposed problem and methods apply to directed road networks, includ-

ing bidirectional edges that have different weights in the opposite directions. Nevertheless, for ease of presentation, the

both directions of a bidirectional edge are assumed the same weight in our examples. Obviously, there exist | W | = 8 pos-

sible worlds in total. Fig. 3 (b) shows a possible world instance w = (r 11 , r 22 , r 32) . According to Definition 1 , �w

(c 1) = 0 and

�w

(c 2) = 4 , thus candidate c 2 can be found as the optimal solution to Min-dist problem in w . Unfortunately, there are other

7 possible worlds, and c 2 may not always be the optimal one. For example, in Fig. 3 (c), c 1 is the optima in w

′ = (r 11 , r 21 , r 31)

with �w

′ (c 1) = 12 . Accordingly, we need a mechanism to rank candidates taking all the possible worlds into account. As the

distribution of �w

for any candidate is a random variable, it is reasonable to evaluate the expected value over all possible

worlds.

Definition 2. Given a set F of existing facilities, a set U of users, for all possible worlds W , the expected reduction of total

distance (ERD) with respect to a candidate c is defined as �(c) =

∑

w ∈ W

(�w

(c) × P r[l(U) = w]) .

Incorporating the concept of reference location and the expected Min-dist criteria following possible world semantics,

we are now ready to define the location selection problem proposed in this paper.

Definition 3. Given a spatial network graph G (V, E), a set of existing facilities F and a set of users U , each of whose move-

ment can be modeled as a set of reference locations, the Min-dIst Location SElection oveR User MovemeNt (MILE-RUN)

problem aims to find the optimal location c among a set C of query candidates such that ∀ c ′ ∈ C \ { c }, �(c) ≥�(c ′).

To find the optimal candidate with highest ERD , we need to calculate �w

(c) for every w ∈ W , which requires enumerating

all possible worlds. Unfortunately, | W | is increasing exponentially with respect to | U |. Suppose that each user has only two

reference locations, then for m users, the complexity of the ERD calculation is O (2 m). Hence, directly computing ERD as

Definition 2 is unpractical. In order to solve this, in the following we show how the computation of ERD can be transformed

and addressed from the aspect of reference locations, which can be completed polynomially.

Definition 4. Let r w be the reference location of a mobile user u in possible world w , then the expected nearest facility

distance of u with respect to F in all possible worlds W is defined as E[nnd(F , L (u))] =

∑

w ∈ W

nnd(F , r w) × P r[l(U) = w] .

Lemma 1. E[nnd(F , L (u))] =

∑

r∈ L (u) nnd(F , r) × P r[l(u) = r] .

Proof. Observe that a user u presents at r ∈ L (u) with probability P r[l(u) = r] , and for all | W | possible worlds, r occurs in

P r[l(u) = r] × | W | possible worlds exactly. Then for the possible worlds W

′ ⊆W in which a specific r occurs, namely r w = r if

r w ∈ W

′ , ∑

r w ∈ W

′ nnd(F , r w) × P r[l(U) = w] = nnd(F , r) × P r[l(u) = r] . Hence, taking into account all r ∈ L (u), E[nnd(F , L (u))] =∑

r∈ L (u) nnd(F , r) × P r[l(u) = r] . �

Theorem 1. Given a set of facilities F, a candidate c, and a set of users U, the expected reduction of total distance in Definition

2 can also be computed as �(c) =

∑ m

i =1 E[nnd(F , L (u i))] − E[nnd(F ∪ { c} , L (u i))] .

Proof. Obviously, if we take into account a new facility at candidate location c , E[nnd(F ∪ { c} , L (u))] =∑

r i ∈ L (u) nnd(F ∪ { c} , r i) × P r[l(u) = r i] . According to Lemma 1 , we can transform the computation of ERD from the per-

spective of possible worlds to reference locations as follows.

�(c) =

| W | ∑

j=1

�w j
(c) × P r[l(U) = w j]

=

| W | ∑

j=1

m ∑

i =1

nnd(F , r
w j

i
) × P r[l(U) = w j]

−
| W | ∑

j=1

m ∑

i =1

nnd(F ∪ { c} , r w j

i
) × P r[l(U) = w j]

8 J. Cui et al. / Information Sciences 463–464 (2018) 1–20

Fig. 4. Total expected nearest facility distance.

=

m ∑

i =1

E[nnd(F , L (u i))] −
m ∑

i =1

E[nnd(F ∪ { c} , L (u i))]

=

m ∑

i =1

E[nnd(F , L (u i))] − E[nnd(F ∪ { c} , L (u i)]

�

According to Theorem 1 , we no longer need to enumerate all possible worlds, and the complexity significantly drops

to O (m), which is linearly correlated with the number of users. Suppose that each reference location of a user in

Fig. 3 (a) occurs with the same probability, say 0.5. As illustrated in Fig. 4 (a) and (b),
∑ 3

i =1 E[nnd(F , L (u i))] = 26 and∑ 3
i =1 E[nnd(F ∪ { c 1 } , L (u i))] = 20 (if candidate c 1 is built), and thus �(c 1) = 6 . Similarly, �(c 2) = 2 . Hence, c 1 has higher

expected value and will be selected as the optimal location for the mile-run problem.

5. Solutions to MILE-RUN

In light of Theorem 1 and Definition 3 , a straightforward solution to the mile-run problem is to exhaustively check all

candidate locations. It works as follows. For each c ∈ C , we compute its �(c). Then the candidate with the greatest ERD is

the optimal answer. Despite the avoidance of enumerating all possible worlds for expected Min-dist, this method is still

expensive due to the massive number of network traversals that occur in repeatedly finding the nearest facility of each

reference location for every candidate. In this section, we shall present a series of techniques for solving mile-run problem

with superior efficiency, where two methods are based on spatial locality index structures and another answers the problem

from scratch.

5.1. Network nearest facility circle based method

Intuitively, we observe that a new established facility may only affect (i.e., be the new nearest facility of) a small fraction

of reference locations, in light of series of existing facilities. Furthermore, the ERD of this new facility only depends on

those reference locations that are affected, as the nearest facility distances of other ones remain the same. Motivated by

the observations, we present a solution called Network Nearest Facility Circle , which focuses on only those affected reference

locations for computing ERD .

Lemma 2. Let δr (c) = (nnd(F , r) − nnd(F ∪ { c} , r)) × P r[l(u) = r] be the expected reduction of nearest facility distance of r with

respect to c, then �(c) =

∑

r∈ R + c
δr (c) , where R + c = { r| r ∈ L (u) ∧ u ∈ U ∧ nn (F ∪ { c} , r) = c} .

Proof. For users in U , we denote R −c as the set of all their reference locations that are not affected by the newly established

c , then all reference locations R =

⋃

u ∈ U L (u) = R + c ∪ R −c . If r ∈ R −c , then nnd(F , r) = nnd(F ∪ { c} , r) and

∑

r∈ R −c δr (c) = 0 . Hence,

�(c) =

∑

r∈ R + c
δr (c) . �

As an example in Fig. 4 (b), when c 1 is built, only r 21 and r 31 change their nearest facility into c 1 . Besides, �(c 1) ex-

actly equals to δr 21
(c 1) + δr 31

(c 1) = (12 − 4) × 0 . 5 + (10 − 6) × 0 . 5 = 6 . Motivated by this, the computation cost of mile-run

problem would be significantly reduced, if we could focus on only those reference locations affected by candidates. The In-

cremental Euclidean Restriction paradigm, which was originally presented for nearest neighbor queries in road networks [13] ,

can be adapted for filtering out reference locations which cannot be affected by candidates.

Definition 5. Given a network graph G (V, E), a set of existing facilities F , the network nearest facility circle (NNFC) of a

user u at reference location r ∈ L (u), denoted by NNFC (F, r), is a circle centered at r with radius nnd (F, r).

In Fig. 5 (a), the bold edge segments denote the actual network distance from r to its nearest facility f ∈ F , namely nnd (F,

r), and the dashed circle is exactly the NNFC (F, r).

J. Cui et al. / Information Sciences 463–464 (2018) 1–20 9

Fig. 5. NNFC.

Lemma 3. Given a NNFC (F, r), any facility lies outside it cannot be the nearest facility of r.

Proof. Let d ε(� , � ′) represent the Euclidean distance. Fig. 5 (a) illustrates that a candidate facility c 2 lies outside NNFC (F, r),

and d ε(r, c 2) > nnd (F, r). As the network distance between two locations is at least as large as the Euclidean one, i.e., d (r,

c 2) ≥ d ε(r, c 2), then c 2 cannot be the nearest facility of r . �

In light of Lemmas 2 and 3 , only the reference locations whose NNFCs enclose a certain candidate c may contribute

to �(c), therefore, the others can be pruned in the ERD computation. In Fig. 5 (b), as c 1 locates inside NNFC (F, r 21) and

NNFC (F, r 31), we can derive �(c 1) from δr 21
(c 1) and δr 31

(c 1) , which is in line with the case in Fig. 4 (b). Similarly, �(c 2) only

correlates to r 32 . As the enclosure relation is on the basis of Euclidean distance, existing spatial index techniques, such as R-

tree [8] , can be applied for better efficiency. In particular, for all the reference locations, we precompute their corresponding

nearest facility distances, and then utilize an R-tree RT r to index the minimum bounding rectangle (MBR) of every NNFC. We

organize candidate locations C by another R-tree RT c . Given a query with series of candidate locations C , we can quickly

identify all NNFCs that enclose each specific candidate with the help of RT r . Since all candidate locations in RT c need to

identify the corresponding NNFCs, a spatial join between the two R-trees is exactly suitable, which finds out all intersected

NNFC-candidate pairs.

Furthermore, based on spatial join, we have the following two observations. Firstly, as a reference location could be

affected by multiple candidates, computing distances for all NNFC-candidate pairs results in redundant network traversals.

Secondly, candidates probably have skewed ERD distribution, then the distance computations for candidates with relatively

lower ERD s might be unnecessary. Hence, in light of the fact that the computation cost of network distance in a large

network is more expensive than that of Euclidean distance, we employ a delay computation policy, based on Euclidean ERD

upper bound and Max Heap, to avoid both redundant and unnecessary computations.

Lemma 4. If candidate c locates inside NNFC (F, r), the upper bound of δr (c), denoted by δ+
r (c) , is (nnd(F , r) − d ε (r, c)) ×

P r[l(u) = r] .

Proof. As c locates inside NNFC (F, r), the actual reduction of distance is nnd(F , r) − d(r, c) . Obviously, d (r, c) ≥ d ε(r, c), then

nnd(F , r) − d ε (r, c) ≥ nnd(F , r) − d(r, c) , and thus (nnd(F , r) − d ε (r, c)) × P r[l(u) = r] is the upper bound of δr (c). �

Definition 6. Given a candidate c and a set R c of reference locations whose NNFC s enclose c , the ERD upper bound of c is

denoted as �+ (c) =

∑

r∈ R c δ
+
r (c) .

ERD upper bound, by which we use a Max Heap CH to order candidates, avoids computing distance for every NNFC-

candidate pair. Each entry of CH is in the form of 〈 c, �+ (c) , R c 〉 . Utilizing CH , we can easily prune inferior candidates whose

�+ (c) are less than the currently found ERD , and thus the network traversals for reference locations correlated to the

candidates are no longer needed. By incorporating spatial join and delay computation, we develop an algorithm, called

NNFC Spatial Join , for solving mile-run . Algorithms 1 and 2 show the detailed steps.

We first initialize the optimal location o � , �(c)s for all candidates, CH and a HashMap HM (lines 1–3). For each reference

location r, HM records the number of candidates enclosed by NNFC (F, r), namely the maximum number of candidates that

could affect r . Then, we begin the spatial join process from the root nodes of RT c and RT r (line 4). Algorithm 2 (SJ) recursively

retrieves nodes on both R-trees, until all candidate entries are checked. Specifically, for any non-leaf node N , if one of its

entry e ∈ N intersects a node in the other R-tree, the child nodes of e (i.e., e c .child, e r .child) will be recursively explored (SJ,

lines 1–12). If nodes in RT c and RT r are both leaves, we update CH entry of c and increase the number of candidates enclosed

by NNFC (F, r) (SJ, lines 13–17). When spatial join is done, facilities in F and candidates in C are added to network G (V, E) to

augment existing vertices for subsequent network traversals (line 5). Specifically, for edges on which some facilities and/or

candidates locate, each of them is split into edge segments by the facilities and/or candidates, thus an augmented network

10 J. Cui et al. / Information Sciences 463–464 (2018) 1–20

Algorithm 1: NNFC Spatial Join (NSJ).

Input : road network G (V, E) , candidates R-tree root node N c , NNFCs R-tree root node N r

Output : the optimal location o�

1 initialize o� := NULL , �(o�) := 0 and �(c) := 0 (∀ c ∈ C);

2 initialize a global CH that will be ordered by �+ (c) ;

3 initialize a HashMap HM := ∅ of reference locations;

4 SJ(N c , N r , CH, HM);

5 augment G (V, E) with F and C as extra vertices, i.e., G

′ (V ′ , E ′) where V ′ = V ∪ F ∪ C;

6 while CH � = ∅ do

7 heap entry 〈 c t , �+ (c t) , R c t) 〉 := Pop(CH) ;

8 if �+ (c t) ≤ �(o�) then

9 return o� ;

10 foreach r i ∈ R c t do

11 if HM(r i) = 0 then

12 continue;

13 while do

14 traverse G

′ from r i (by Dijkstra algorithm) until a candidate or facility vertex v ∈ V ′ is found;

15 if v is a candidate vertex then

16 δr i (v) := (nnd(F , r i) − d(r i , v)) × P r[l(u) = r i] ;

17 �(v) := �(v) + δr i (v) ;
18 HM(r i) := HM(r i) − 1 ;

19 if HM(r i) = 0 then

20 break;

21 else if v is a facility vertex then

22 HM(r i) := 0 ;

23 break;

24 if �(c t) > �(o�) then

25 update o� := c t and �(o�) := �(c t) ;

26 return o� ;

Algorithm 2: Spatial Join (SJ).

Input : candidates R-tree node N c , NNFCs R-tree node N r , CH and HM

1 if N c and N r are non-leaf nodes then

2 foreach 〈 e c , e r 〉 ∈ N c × N r do

3 if e c .MBR ∩ e r .MBR � = ∅ then

4 invoke SJ with e c .child, e r .child;

5 else if N c is a leaf node ∧ N r is a non-leaf node then

6 foreach e r ∈ N r do

7 if N c .MBR ∩ e r .MBR � = ∅ then

8 invoke SJ with N c , e r .child;

9 else if N c is a non-leaf node ∧ N r is a leaf node then

10 foreach e c ∈ N c do

11 if e c .MBR ∩ N r .MBR � = ∅ then

12 invoke SJ with e c .child, N r ;

13 else if N c and N r are leaf nodes then

14 foreach e c ∈ N c ∧ e c ∩ N r � = ∅ do

15 foreach e r ∈ N r ∧ e c ∩ e r � = ∅ do

16 update �+ (c) := �+ (c) + δ+
r (c) and R c := R c ∪ { r} of heap entry c in CH;

17 HM(r) := HM(r) + 1 ;

J. Cui et al. / Information Sciences 463–464 (2018) 1–20 11

Fig. 6. Local network based method.

G

′ (V

′ , E ′) is obtained, where V ′ = V ∪ F ∪ C, E ′ consists of the undivided edges and the split edge segments. In other words,

the road network is now composed of road intersection vertices, existing facility vertices and candidate vertices. Afterwards,

we iteratively check the top candidate c t in CH (lines 6 and 7). Once �+ (c t) ≤ �(o�) holds, no candidate can be better than

o � , then o � is the answer (lines 8 and 9). Otherwise, we verify each r i , whose NNFC covers c t , by traversing G

′ (V

′ , E ′) (e.g., by

Dijkstra algorithm) until all candidates that can affect r i are found or the nearest facility of r i is found. Before the traversal,

we first check whether HM (r i) equals to zero, which means no candidate is enclosed by NNFC (F, r i) or r i has been explored

earlier by another candidate c where r i ∈ R c . If so, we can immediately probe the next reference location in R c t (lines 11 and

12). During the traversal from r i , if a candidate (vertex) v is encountered, with the distance d (r i , v), we update its �(v) by

adding δr i (v) . Then we decrease HM (r i) by 1 to mark the number of remaining candidates that could affect r i (lines 13–18).

After that, if HM(r i) = 0 , which means all the candidates that can affect r i are visited, it is unnecessary to find the nearest

facility (lines 19 and 20). On the other hand, if the nearest facility is met, the traversal from r i is complete and we mark

r i as explored (i.e., set HM (r i) to 0) (lines 21–23). After the iteration of R c t , the ERD of c t is derived. We then update o � if

necessary and proceed to the next top candidate, and the optimal candidate is finally obtained (lines 24–26).

5.2. Local network based method

With the help of Euclidean spatial locality (i.e., NNFC), it only needs to take the reference locations affected into con-

sideration. Similar to the underlying idea, we expand the NNFC concept to its counterpart in network locality, namely local

network , such that we can only take into account the reference locations in whose local networks a new facility locates

(i.e., affects). Local network concept was proposed to model the network locality of a user with respect to her nearest fa-

cility [7] . Specifically, it is a sub-network expanded from user location l(u) = r with a distance less than or equal to nnd (F,

r). As shown in Fig. 6 (a), the bold edge sections are the local network of r 31 , where the nearest facility of r 31 is f 1 and

nnd(F , r 31) = 10 . According to Ghaemi et al. [7] , which aims to handle a Max-inf problem (MaxOSN), local networks do not

contain distance information. As a result, the concept cannot be directly applied to solve our problem. Moreover, in [7] ,

users (reference locations in our case) are viewed as vertices in road network, which results in more complicated network

traversals as the number of users is very large. Additionally, in order to delimit the local networks of users, ending points of

local networks (referred to as delimitation markers in [7]) are marked and further complicates the network. Fig. 6 (a) shows

two delimitation markers.

In this section, by incorporating distance factor to the network locality, we present a Local Network based method to ad-

dress mile-run . Differing from [7] , only existing facilities are settled on the road network. Also, we introduce the expanding

direction of an edge to replace delimitation markers, such that complexity in the evaluation of distance, from a reference

location to any point on the edges of its local network, can be significantly reduced.

Definition 7. Given a reference location r and an undirected edge v i v j , if a network path expended from r traverses the edge

or part of it from v i towards v j , we denote the directed edge with respect to r as r
−−→ v i v j .

For example, v 1 v 3 and v 1 v 5 are two undirected edges in Fig. 6 (a). Expanding local network of r 31 , v 1 v 3 is traversed from

v 1 towards v 3 , and thus the directed edge with respect to r 31 is r 31
−−→ v 1 v 3 . The case of v 1 v 5 is more complicated. The network

path expanded from r 31 to f 1 traversing v 1 v 5 is from v 5 towards v 1 , then we denote it as r 31
−−→ v 5 v 1 . To the contrary, for any

candidate that locates between r 31 and f 2 (e.g., c 1), the directed edge is r 31
−−→ v 1 v 5 .

Definition 8. Given r
−−→ v i v j , on which a candidate is built, the maximum and minimum reductions of distance on r

−−→ v i v j are

denoted as σ+ (r
−−→ v i v j) and σ−(r

−−→ v i v j) .

As shown in Fig. 7 (a), where r accesses the nearest facility f traversing r
−−→ v i v j (the general case that r expands its local

network traversing r
−−→ v i v j also holds), σ+ (r

−−→ v i v j) and σ−(r
−−→ v i v j) can be easily computed as nnd(F , r) − d (r, v i) and nnd (F , r) −

12 J. Cui et al. / Information Sciences 463–464 (2018) 1–20

Fig. 7. Compute reduction of distance via σ+ and σ− .

d(r, v j) . Based on σ+ (r
−−→ v i v j) , we can derive the ERD upper bound of any candidate to be built on v i v j , which overlaps with

the local networks of a set R v i v j of reference locations, as �+ (v i v j) =

∑

r k ∈ R v i v j
σ × P r[l(u) = r k] , where

σ =

{
σ+ (r k

−−→ v i v j) if r k
−−→ v i v j ,

σ+ (r k
−−→ v j v i) if r k

−−→ v j v i .
(1)

As there is no road of retrogression when expanding a local network, either of the cases in Eq. (1) holds. On the other hand,

based on σ−(r
−−→ v i v j) , if a candidate c is deployed on r

−−→ v i v j , as shown in Fig. 7 (b), we can calculate δr (c) as

δr (c) = (nnd(F , r) − d(r, c)) × P r[l(u) = r]

= (nnd(F , r) − (d(r, v j) − d(c, v j))) × P r[l(u) = r]

= (σ−(r
−−→ v i v j) + d(c, v j)) × P r[l(u) = r] . (2)

Eq. (2) has three special cases: Firstly, if σ−(r
−−→ v i v j) + d(c, v j) is negative, which means c locates outside the local network

of r , and thus we set δr (c) to zero. Secondly, if σ−(r
−−→ v i v j) + d(c, v j) is greater than σ+ (r

−−→ v i v j) , namely d (c, v j) > d (v i , v j), which

is impossible, then c must not be accessed from v i to v j . This indicates the reverse direction r
−−→ v j v i exists and r must locate on

v i v j . Hence, c takes effect on the direction from v j to v i , therefore δr (c) = (σ−(r
−−→ v j v i) + d(c, v i)) × P r[l(u) = r] instead. In this

case, v i v j can be called a bidirectional directed edge with respect to r , and σ+ (r
−−→ v i v j) = σ+ (r

−−→ v j v i) = nnd(F , r) , as a candidate

would be exactly built overlapping r . For σ in Eq. (1) , its value is accordingly nnd (F, r k).

For instance, for candidate location c 2 in Fig. 6 (a), σ−(r 31
−−→ v 3 v 4) + d(c 2 , v 4) = −4 + 2 < 0 . It indicates that c 2 is outside the

local network of r 31 , then δr 31
(c 2) is set to 0. The situation of candidate c 1 is more complex, as r 31

−−→ v 1 v 5 and r 31
−−→ v 5 v 1 both

exist. As σ−(r 31
−−→ v 5 v 1) + d(c 1 , v 1) = 6 + 6 > σ+ (r 31

−−→ v 5 v 1) = 10 , c 1 brings the reduction of distance from the reverse direction

r 31
−−→ v 1 v 5 instead of r 31

−−→ v 5 v 1 . Hence, δr 31
(c 1) = (σ−(r 31

−−→ v 1 v 5) + d(c 1 , v 5)) × P r[l(u 3) = r 31] = (−2 + 10) × 0 . 5 = 4 .

The third special case can be described in Fig. 7 (c). Supposing v 1 v 3 is a bidirectional road, the shortest path from r to c

is r → v 2 → v 3 → c instead of r → v 1 → c . This is another kind of bidirectional directed edge with respect to r . The reason is

that, except the shortest path (via v 2 v 3), the other paths from r to v 3 (e.g., via v 1 v 3) have longer distances (e.g., d(r, v 3) <
d(r, v 1) + d(v 1 , v 3)). Then c is reached via the shortest path from v 3 (i.e., r

−−→ v 3 v 1) instead of from v 1 (i.e., r
−−→ v 1 v 3). Obviously,

there exists one and only one location � c , called critical location , on v 1 v 3 such that d(r, v 1) + d(v 1 , � c) = d(r, v 3) + d(v 3 , � c) .
If an edge v i v j has a critical location � c , the farthest distance from r to any location of v i v j is onto � c instead of its endpoints,

and thus Eq. (2) needs to be adjusted, if c locates on v i v j .

Lemma 5. Given candidate c on a bidirectional v i v j with critical location � c , where d(r, v i) < d(r, v j) < d(r, v i) + d(v i , v j) . Let

offset be d (� c , v j) . If d (c, v j) ≥ offset, Eq. (2) is applicable; otherwise, it is adjusted as δr (c) = (σ−(r
−−→ v i v j) + 2 × offset − d(c, v j)) ×

P r[l(u) = r] .

Proof. According to the definition of critical location, we have d(r, v i) + d(v i , � c) = d(r, v j) + d(� c , v j) and d(v i , � c) =
d(v i , v j) − d(� c , v j) , then offset =

1
2 (d(r, v i) + d(v i , v j) − d (r, v j)) . When d (c, v j) ≥ offset , as c 1 in Fig. 7 (d), it locates on r

−−→ v i v j ,
then Eq. (2) holds. If d(c, v j) < offset , as c 2 in Fig. 7 (d), it is reached from v j , namely r

−−→ v j v i . As the distances from r to loca-

tions on v i v j are symmetrical with � c , we can find the symmetry location c ′ 2 of c 2 , and d(r, c ′ 2) = d(r, c 2) . As Eq. (2) holds

for c ′
2
, we can compute δr (c 2) = δr (c ′

2
) = (σ−(r

−−→ v i v j) + 2 × offset − d(c, v j)) × P r[l(u) = r] . �

Based on the above discussion, we design a Local Network Table (LNT) to organize directed edges. Each entry of LNT is

associated with a directed edge and consists of its ERD upper bound and a set of reference location entries, each of which

is in the form of 〈 P r[l(u) = r] , σ+ (r
−−→ v i v j) , σ−(r

−−→ v i v j) , offset 〉 . Fig. 6 (b) illustrates part of the LNT that is correlated with r 31

for simplicity. We construct LNT in four steps. Firstly, from a reference location r , we expand network paths via Dijkstra

algorithm. For each r
−−→ v i v j traversed, we record d (r, v i) and d(r, v i) + d(v i , v j) . Secondly, after the nearest facility of r is found,

we compute for each recorded r
−−→ v i v j the σ+ , σ− and offset based on the correlated distances and d (r, v j). For r

−−→ v i v j , if

offset > 0, which means a critical location and r
−−→ v j v i exist, we insert the reverse edge into LNT. Thirdly, iteratively scan

all reference locations following the two steps above. Finally, we accumulate �+ (v i v j) s of each v i v j with corresponding

reference locations.

Utilizing LNT, as shown in Algorithm 3 , it does not need any network traversal when querying the optima from given

candidates C . We first initialize a Max Heap LNH from LNT ordered by �+ (v i v j) of edge v i v j on which a candidate locates.

J. Cui et al. / Information Sciences 463–464 (2018) 1–20 13

Algorithm 3: Local Network Based (LNB).

Input : LNT , candidate locations C

Output : optimal location o�

1 initialize LNH based on LNT and C ordered by �+ (v i v j) ;
2 while LNH � = ∅ do

3 〈 c, �+ (v i v j) , { v i v j (, v j v i) }〉 := Pop(LNH) ;

4 if �(o�) > �+ (v i v j) then

5 return o� ;

6 else

7 �(c) := 0 ;

8 foreach r associated with v i v j in LNT do

9 if offset > d(c, v j) then

10 compute δr (c) based on Lemma 5;

11 �(c) := �(c) + δr (c) ;

12 continue;

13 d := σ−(r
−−→ v i v j) + d(c, v j) ;

14 if 0 < d ≤ σ+ (r
−−→ v i v j) then

15 �(c) := �(c) + d × P r[l(u) = r] ;

16 else if d > σ+ (r
−−→ v i v j) then

17 if v j v i exists then

18 d := σ−(r
−−→ v j v i) + d(c, v i) ;

19 if 0 < d then

20 �(c) := �(c) + d × P r[l(u) = r] ;

21 if �(c) > �(o�) then

22 update o� := c and �(o�) := �(c) ;

23 return o� ;

Each entry of LNH is in the form of 〈 c, �+ (v i v j) , { v i v j (, v j v i) }〉 , where in parenthesis is the reverse directed edge, if it exists.

If a candidate is correlated with a bidirectional directed edge v i v j , we use �+ (v i v j) + �+ (v j v i) for ordering (line 1). Then

we iteratively check the top candidate c in LNH (lines 2 and 3). If �(o �) of current optimal candidate o � is greater than ERD

upper bound of the popped edge v i v j , the validation is finished (lines 4 and 5). Otherwise, we evaluate �(c) based on σ+ ,
σ− and offset of the related edge(s). �(c) is initialized to 0 (line 7). For every reference location whose local network covers

v i v j , we first check whether offset < d (c, v j). If it holds, we compute δr (c) following Lemma 5 and continue to probe the next

reference location (lines 8–12). Normally, we compute σ−(r
−−→ v i v j) + d(c, v j) , which is denoted by a temporary variable d in

Algorithm 3 , and check its value. If the value is valid, we accumulate it to �(c) (lines 13–15). Otherwise, if c is associated

with a bidirectional edge, we compute the reduction of distance in the opposite direction (lines 16–20). Notably, in line 19

σ+ is not checked, as it is impossible that δr (c) is greater than σ+ × P r[l(u) = r] in both directions by contradiction. If a

better candidate is found, we update o � (lines 21 and 22). Afterwards, we probe the unchecked candidates until the optima

is finally obtained.

5.3. Extended network method

In both of the methods proposed above, the information of existing facilities and movements of users is assumed to be

known in advance, and we can precompute and index them offline, such that an arbitrary query with a group candidates

of mile-run problem can be answered efficiently. Nevertheless, in some cases we may not have any idea about the existing

facilities or users in advance, which prevents the aforementioned methods being applied directly. Is it possible to address

mile-run in an online manner? In order to solve the problem, in this part we propose a method based on network extension

such that mile-run can be answered from scratch even if we do not have any index of existing facilities or users. The main

idea is to perform the network extension for every reference location to find its nearest facility, and in the process, we

progressively accumulate δr (c) for each candidate that is encountered before the nearest facility of every reference location.

We employ a Candidate Accumulative Table (CAT) to store the accumulative δr (c) of every candidate. Each entry of CAT is

in the form of 〈 c, ∑

r∈ R ′ δr (c) 〉 , where R ′ denotes the reference locations that encounter c before finding the nearest facilities

(i.e., c is nearer to r). For instance, Fig. 8 shows CAT of Fig. 3 (a). The method consists of four steps and is outlined in

Algorithm 4 . Firstly, we initialize CAT for all candidates. Similar to the augmentation in Algorithm 1 , road network G (V, E)

14 J. Cui et al. / Information Sciences 463–464 (2018) 1–20

Fig. 8. Candidate accumulative table (CAT).

Algorithm 4: Extended Network (EN).

Input : network graph G (V, E) , existing facilities F , users U , candidate locations C

Output : optimal location o�

1 initialize CAT. c := 0 (∀ c ∈ C);

2 augment G (V, E) with F and C as extra vertices, i.e., G

′ (V ′ , E ′) where V ′ = V ∪ F ∪ C;

3 foreach u i ∈ U do

4 foreach r j ∈ L (u i) do

5 initialize V 2 := ∅ ;
6 while do

7 traverse G

′ from r i (by Dijkstra algorithm) until a candidate or facility vertex v ∈ V ′ is found;

8 if v is a candidate vertex then

9 record 〈 v , d(r j , v) 〉 in V 2 ;

10 else if v is a facility vertex then

11 foreach 〈 c k , d(r j , c k) 〉 ∈ V 2 do

12 CAT. c k := CAT. c k + δr j (c k) ; // δr j (c k) = (d(r j , v) − d(r j , c k)) × P r[l(u i) = r j]

13 release V 2 ;

14 break;

15 return o� with greatest �(c) ;

is augmented by adding existing facilities F and candidates C as extra vertices (lines 1 and 2). Secondly, for each reference

location of users, we explore its nearest facility f ∈ F by Dijkstra algorithm. During the process, if a candidate vertex c ∈ C

is encountered before f is found, which means d (r, c) ≤ nnd (F, r), we temporarily record c and the distance d (r, c) in a two-

dimensional Vector V 2 (lines 8 and 9). Thirdly, we traverse the augmented network until the nearest facility f is found. At

this point, all the candidates that can affect the reference location have been in V 2 . We compute δr (c) for each candidate c in

V 2 and accumulate it to the corresponding CAT entry. Afterwards, the temporary V 2 is released and we proceed to the next

reference location (lines 10–14). Finally, after the exploration of all users, all the reference locations that a certain candidate

c can affect are known, that is
∑

r∈ R ′ δr (c) = �(c) , and the answer with greatest �(c) can be obtained.

6. Cost analysis

In this section, we conduct theoretical study over all proposed methods (i.e., Straightforward, NSJ, LNB and EN). Observe

that the time complexity for finding the nearest facility of a reference location is O (| V |log | V |), as the network traversal

terminates once a facility vertex is found, which means only | V | + 1 vertices (1 means the facility vertex) are involved in

the exploration.

The straightforward method described in the very beginning of Section 5 iteratively checks candidates based on

Theorem 1 , without precomputation and index. Obviously, its complexity is O (| C | · | R | · | V |log | V |), where | R | is the number

of reference locations of all users.

NSJ method needs to precompute nnd (F, r)s for reference locations, and the time cost is O (| R | · | V |log | V |). NSJ utilizes

an R-tree RT r to index NNFCs. The height and maximum number of nodes of RT r can be denoted as h r = � log | e | | R |� and

| N| = � | R | | e | � + � | R | | e | 2 � + . . . + 1 , respectively, where | e | denotes the average number of entries in a node of RT r . Then the space

complexity of RT r is O (| R | + | N|) . As the insert operation of R-tree runs in O ((h r − 1) + | e | k) time, where k = 1 and k = 2 are

for the linear and quadratic splitting algorithms, respectively [8] , the time complexity of index is O (| R | · ((h r − 1) + | e | k)) .
The query cost of NSJ depends on both the spatial join and max heap procedures. In spatial join process, RT c is ex-

plored in a depth-first order. At most, for each RT c node, (h r − 1) · | e | nodes in RT r is required, that is | C| · (h r − 1) · | e |
for candidates. For querying the max heap CH , in the best case, the top candidate is the optimal one, thus only one

R c t set of reference locations need network traversals. In the worst case, all candidates need to be scanned. Normally,

as demonstrated in Section 7 , | C ′ | candidates are explored, where | C ′ | � | C |. On the other hand, the number | R ′ | of refer-

ence locations affected by each candidate is very limited compared to | R |, namely | R ′ | � | R |. Hence, the query complexity is

O (| C| · (h r − 1) · | e | + | C ′ | · | R ′ | · | V | log | V |) .

J. Cui et al. / Information Sciences 463–464 (2018) 1–20 15

Table 2

Real facilities of CA and BJ.

California(CA) | F | Beijing City(BJ) | F |

Bars(BA) 200 Cafes(CF) 1500

Hospitals(HO) 800 Gas Stations(GS) 1500

Post Offices(PO) 800 Logistics(LO) 2500

Parks(PA) 3200 Banks(BK) 2500

Schools(SC) 3200 Schools(SC) 2500

For LNB, it also precomputes nnd (F, r) for reference locations, whose time complexity is O (| R | · | V |log | V |), and LNT is

constructed during the process. The best case occurs when each reference location has its nearest facility on the same edge,

then LNT contains | R | records and costs O (| R |) time, where the insertion of each record can be run in O (1) time. In the worst

case, if there is only one facility, each reference location traverses massive edges to get there, then LNT requires O (| E | · | R |)

space and O (| E | · | R |) time.

The query cost of LNB only depends on querying max heap LNH, as it does not need any network traversal when querying

candidates. The best (resp., worst) case occurs when only the top entry (resp., all entries) is (resp., are) explored. Experiments

in Section 7 show that a very tiny proportion of directed edges | E ′ | (| E ′ | � | E |) are checked. Despite many reference locations

are associated with each directed edge, the computation of the exact �(c) is a simple floating-point operation, and its cost

can be viewed as O (1). Hence, the query complexity of LNB is O (| E ′ |).
For EN method, the Candidate Accumulative Table (CAT) consists of | C | entries. As the network is augmented by candidate

locations as extra vertices, the time complexity of EN is O (| R | · (| V | + | C|) log (| V | + | C|)) .
In summary, in the aspect of query efficiency, we have LNB � NSJ > EN � Straightforward. Our experimental study

will also validate these analyses.

7. Performance study

In this section, we investigate the performance of our proposed mile-run solutions from a variety of aspects.

7.1. Experimental setup

Datasets. We use two real spatial networks, California (CA) [10] and Beijing City (BJ), 2 in the experiments. CA contains

21,693 bidirectional edges and 21,047 vertices. BJ consists of 433,391 unidirectional edges and 171,504 vertices. Comparing

CA with BJ, the former is relatively sparse with respect to the area it covers. Table 2 describes the real datasets of existing

facilities for CA and BJ. Facilities in each group are randomly chosen from respective datasets, and with different purposes.

For CA, facilities are mainly for comparing the impact of cardinality. For BJ, we focus on the effect on different geographical

distributions. PO and LO are default groups for CA and BJ, respectively.

We conduct experiments on both real and synthetic datasets of reference locations of users. The real data for BJ, which

is available from [31] , collected moving users in Beijing, and there are 136,686 sample points for each user on average. For

CA, we use the discrete check-in data 3 for representing users. Excluding the users with less than 20 check-ins, the average

number of check-ins for a user is about 125. For each user, the average differences between the maximum and minimum

present probabilities are 0.278(CA) and 0.367(BJ), respectively, which means the distributions are skewed. Accordingly, we

synthesize 1 to 6 reference locations with proportions 5%, 20%, 35%, 25%, 10% and 5% for each of users, the number of

which ranges from 20 k to 100 k. Furthermore, we use two schemes, Random and Uniform, to generate present probabilities

of reference locations. For the former, probabilities are distributed purely randomly. For Uniform, if a user has n reference

locations, the present probability at each location is uniformly set as 1/ n . The geographical location of each reference location

is uniformly distributed. For candidate locations, we choose 50, 10 0, 20 0, 40 0 and 80 0 locations within the geographical

domain at random

4 Unless specified otherwise, the default values of | C |, m and the distribution of present probability are

200, 60 k and Random, respectively.

Algorithms. Following algorithms are evaluated in the experiments. They are implemented in C++ and tested on a

3.2 GHz quad-core machine with 32GB RAM, running Windows 10 (64 bit). 5

• NA: A baseline solution that exhaustively computes the expected reduction of total distance for each candidate, based on

which we retrieve the optimal one.
2 The road network and facilities datasets are available from http://www.datatang.com/datares/go.aspx?dataid=619746 and http://www.datatang.com/

datares/go.aspx?dataid=617882 .
3 Check-ins data in California are obtained and integrated from http://snap.stanford.edu/data/ .
4 For the synthetic objects that are not exactly located on roads, we shift them to the closest point of on the road network.
5. https://github.com/lihuixidian/MILE-RUN

http://www.datatang.com/datares/go.aspx?dataid=619746
http://www.datatang.com/datares/go.aspx?dataid=617882
http://snap.stanford.edu/data/
https://github.com/lihuixidian/MILE-RUN

16 J. Cui et al. / Information Sciences 463–464 (2018) 1–20

Fig. 9. Effect of | C |.

• NSJ: NNFC Spatial Join method described in Algorithms 1 and 2 . The R-trees are loaded in main memory. The maximum

number of elements in R-tree nodes is 16. 6

• LNB: Local Network Based method described in Algorithm 3 . The LNT is loaded in main memory.

• EN: Extended Network method that is described in Algorithm 4 .

7.2. Experimental results

Effect of | C | . We first investigate the performances when querying with different algorithms. Fig. 9 reports the running

time varying the number of candidates. As NA iteratively computes for each candidate, its cost is the worst and increases

linearly with | C |. Compared to NA, the other methods significantly reduce the time by several orders of magnitude. LNB

shows the best scalability, followed by NSJ and EN. The query time of LNB is stable within milliseconds regardless of | C | and

road networks. The reason is twofold. Firstly, the queries are only relevant to the lookup process of LNH without network

retrieval. Secondly, the max heap prunes quite a few inferior candidates. The time of EN changes very little as | C | is much

smaller than | V | such that it has limited impact on network traversal. The situation of NSJ is more complicated as the effi-

ciency varies irregularly with the number of candidates. There are two factors that determine the running time. One factor

is the number of candidates to be checked in max heap CH. The other factor is the number of reference locations correlated

with each candidate to be checked. The latter factor is dominant due to the cost of network traversal. The proportions of

candidates pruned by max heaps in NSJ and LNB are both high (e.g., ≥ 95%). Despite the numbers of checked candidates are

very close (e.g., the maximum difference between NSJ and LNB is only 7 candidates), LNB is significantly better than NSJ,

which is because network traversal is more expensive than floating-point operation.

Effect of | U | . In this part, we first test the scalability of the algorithms with respect to the cardinality of users. As illus-

trated in Fig. 10 , the cost mostly increases when the number of users (i.e., reference locations) grows. Obviously, the results

are qualitatively similar to Fig. 9 . LNB exhibits the best performance, followed by NSJ, EN and NA. LNB is still stable and

within milliseconds.

Next, we study the precomputation costs of NSJ and LNB. In line with the theoretical analysis, the complexity of the

construction of NNFCs is the same as EN, and the time of constructing LNT is also very close. On the other hand, we also

study the cost of spatial join using R-trees (referred to as SJ in Fig. 10). It costs much less compared to network traversal in

NSJ, which means Euclidean spatial locality takes effect in pruning. Moreover, the irregular case of 80 k in Fig. 10 (b) shows

again that the number of reference locations correlated with candidates to be checked is dominant in NSJ.

Effect of F . In this part, we study the algorithms on different existing facility groups. Apparently, the efficiencies are

qualitatively similar to aforementioned results, where LNB is the best, followed by NSJ, EN and NA. Except LNB, the running

cost mostly drops with the increase of | F | for the other algorithms. This is because LNB only depends on float-point com-

putation, while the others require network traversal. Obviously, more facilities lead to shorter network paths on average.

Moreover, compared to EN, NSJ is more sensitive to | F |. For instance, in CA, the number of parks is 16 times as many as

that of bars. Compared to bars, NSJ and EN reduce the time of parks by two and one order(s) of magnitude, respectively.

The reason is the NNFC policy. nnd (F, r) is nearer with shorter network paths, then NNFCs are smaller, which means more

candidates can be pruned and less network traversals are needed.

We also explore the effect of geographical distribution of facilities. As shown in Fig. 12 , the two facility groups have the

same cardinality, while their distribution is completely distinct: Gas stations are relatively uniform, while cafes are skewed.
6 According to the following experiments, the cost of spatial query using R-tree is small. Hence, the number of elements has limited effect. Also, other

variations of R-tree and hierarchical spatial data structures can also be applied.

J. Cui et al. / Information Sciences 463–464 (2018) 1–20 17

Fig. 10. Effect of | U |.

Fig. 11. Effect of | F |.

Fig. 12. Distribution of facilities.

This results in cost differences of NA, EN and NSJ, where NSJ is still the most sensitive algorithm. For LO, BK and SC in

Fig. 11 (b), EN shows they are with similar quantity of network traversal. However, due to geographical distribution, the

NNFC policy has different pruning powers. Additionally, as BA (resp., CF) shown in Fig. 11 (a) (resp., Fig. 11 (b)), if facilities are

both skewed distributed and with small cardinality, the performance of NSJ will degrade.

Effect of distributions on results. Below, we study the effect on resulting candidates in terms of two kinds of distribu-

tions: the geographical distribution of facilities and the probability distribution that a user appears at her reference locations.

18 J. Cui et al. / Information Sciences 463–464 (2018) 1–20

Table 3

Average precision (AP) comparison.

of Users. 1 k (CF) 100 k (CF) 1 k (GS) 100 k (GS)

AP@50 0.896 0.959 0.756 0.960

Table 4

Expected reduction of total distance (ERD)

(km).

CA BJ

avg. ERD on RANDOM 48,527 3133

avg. ERD on UNIFORM 54,581 3534

avg. ERD difference (%) 12.5 12.8

Fig. 13. Real data.

For the former, we still use CF and GS in Fig. 12 , due to the apparent distinction. For the latter, we use two groups, 1 k and

100 k, of the same users with Uniform and Random present probabilities, respectively. We record the top-50 of 800 can-

didates for comparison. To reflect the ranking factor of the candidates, we use Average Precision (AP) as the measure to

compare the results based on Uniform to those on Random. Table 3 reports these AP@50 values. The difference of results

is more significant for less users. The reason is that, if the number of users, whose reference locations are uniformly dis-

tributed, is large enough, all present probabilities of reference locations approach to be uniform in the space domain. That

is, the more users there are, the more important for the reference locations comparing to the present probabilities. It implies refer-

ence locations, nearby which users conduct their daily activities, are indeed closely related for choosing an optimal candidate . This

observation is exactly in line with our original intention that movement should be taken into account for location selection.

On the other hand, the more uniform geographical distribution of facilities, the bigger difference of results, as less users will

be affected by a new candidate.

We also compare the ERD differences between Uniform and Random distributions on average, where ERDs are asso-

ciated with the optimal candidates selected on Random distribution. Table 4 shows that candidates in CA gain larger

ERDs than in BJ, due to the larger geographical area of CA. In addition, the proportion difference of ERDs, computed as
ERD on Uniform −ERD on Random

ERD on Random

× 100% , are around 12.5% (CA) and 12.8% (BJ). This further shows the movements of users, namely

the skewed present probabilities at reference locations, influence the result.

Effect on network. In this part, we briefly report the effect on network scale. As demonstrated in the experiments above,

except LNB, the running times in BJ are an order of magnitude longer than the counterparts in CA. As the scale of BJ has a

larger magnitude than that of CA, the scalability is exactly in line with the theoretical analysis. Note that, if the geographical

distribution of facilities is quite different, e.g., the skewed CF versus the uniform GS in BJ, the time cost might deviate from

the network scale.

Experiments on real users. The experimental results on real users are shown in Fig. 13 . The comparative performance of

the methods is similar to that of experiments conducted for the synthetic datasets. LNB still outperforms the other methods.

In CA, the running time of NSJ and EN for BA and HO are close, due to the skewed geographical distributions. For LO in BJ,

the cost of NSJ is similar to that of LNB, which is because the number of users is relatively small and thus the efficiency of

NSJ improves.

Comparison with the state-of-the-art. Finally, we compare our algorithms with the solutions proposed in paper [26] . To

the best of our knowledge, they were the only effort s f or solving the LS problem on road network with Min-dist objective

J. Cui et al. / Information Sciences 463–464 (2018) 1–20 19

Fig. 14. Comparison of | C |.

Fig. 15. Comparison of | U |.

function. For addressing our problem, we need to adapt the solutions from continuous setting to candidates. In order to

avoid evaluating all locations on edges, the authors used network partition strategy, namely attraction sets of sub-networks,

each of which is the union of attraction sets of edge vertices in the sub-network. Obviously, this strategy is redundant for

specific candidates. Consequently, we directly compare the proposed algorithms, Blossom and OTF, 7 with ours. The query

efficiencies of Blossom and OTF are mainly associated with the number of users and candidates, respectively. Hence, we

focus on the query effects of | C | and | U |, where | C | varies from 1 k to 9 k, and | U | is from 20 k to 100 k with 5 k candidates

as default.

As illustrated in Figs. 14 and 15 , the LNB algorithm has the best efficiency both for the scalability of | C | and | U |. The query

cost of Blossom is very close to that of EN as they both utilize Dijkstra algorithm for each user (i.e., reference locations). The

case between NSJ and OTF is complicated. For the relatively small road network CA, NSJ is mostly better than OTF, especially

when the number of candidates grows larger, as illustrated in Fig. 14 (a). While in the relatively larger network BJ, OTF is

slightly better than NSJ. Nevertheless, this trend reverses if the number of candidates grows or the number of users drops.

As a result, in most cases, our proposed algorithms are better than the solutions designed in [26] .

8. Conclusions

In this paper, we introduce a novel location selection problem, Min-dIst Location SElection oveR User MovemeNt (mile-

run), which takes into account the movements of objects. Based on reference locations, which can model moving users

and be captured from movement data, we present two groups of algorithms, index-based and index-free ones for solving

mile-run . The first group, including NSJ and LNB, answers mile-run efficiently with carefully designed index structures,

and fits the case where facilities and users are known apriori. The second group, namely EN, solves the problem from

scratch. Extensive experiments on both real and synthetic datasets demonstrate the superiority of our proposed approaches

compared to the baseline method by orders of magnitude.
7 The source code of Blossom and OTF algorithms is obtained from the authors (http://cs.sjtu.edu.cn/ ∼yaobin/olq).

http://cs.sjtu.edu.cn/~yaobin/olq

20 J. Cui et al. / Information Sciences 463–464 (2018) 1–20

Acknowledgments

The authors would like to thank the editor and anonymous reviewers for their constructive comments on this paper, and

the authors [26] for sharing their codes. This work was supported by the National Natural Science Foundation of China (Nos.

61672408 and 61472298), CCF-VenustechRP2017005 and China 111 Project (No. B16037).

References

[1] S. Bespamyatnikh , B.K. Bhattacharya , D.G. Kirkpatrick , M. Segal , Mobile facility location, in: DIAL-M, 20 0 0, pp. 46–53 .
[2] M.A. Cheema , X. Lin , W. Wang , W. Zhang , J. Pei , Probabilistic reverse nearest neighbor queries on uncertain data, TKDE 22 (4) (2010) 550–564 .

[3] Z. Chen , Y. Liu , R.C. Wong , J. Xiong , G. Mai , C. Long , Efficient algorithms for optimal location queries in road networks, in: SIGMOD, 2014, pp. 123–134 .
[4] E.W. Dijkstra , A note on two problems in connection with graphs, Numer. Math. 1 (1) (1959) 269–271 .

[5] Y. Du , D. Zhang , T. Xia , The optimal-location query, in: SSTD, 2005, pp. 163–180 .
[6] Y. Gao , S. Qi , L. Chen , B. Zheng , X. Li , On efficient k-optimal-location-selection query processing in metric spaces, Inf. Sci. 298 (2015) 98–117 .

[7] P. Ghaemi , K. Shahabi , J.P. Wilson , F.B. Kashani , Optimal network location queries, in: SIGSPATIAL/GIS, 2010, pp. 478–481 .

[8] A. Guttman , R-trees: a dynamic index structure for spatial searching, in: SIGMOD, 1984, pp. 47–57 .
[9] J. Huang , Z. Wen , J. Qi , R. Zhang , J. Chen , Z. He , Top-k most influential locations selection, in: CIKM, 4, 2011, pp. 2377–2380 .

[10] F. Li , D. Cheng , M. Hadjieleftheriou , G. Kollios , S. Teng , On trip planning queries in spatial databases, in: SSTD, 2005, pp. 273–290 .
[11] Z. Li , B. Ding , J. Han , R. Kays , P. Nye , Mining periodic behaviors for moving objects, in: KDD, 2010, pp. 1099–1108 .

[12] D. Papadias , Y. Tao , K. Mouratidis , C.K. Hui , Aggregate nearest neighbor queries in spatial databases, TODS 30 (2) (2005) 529–576 .
[13] D. Papadias , J. Zhang , N. Mamoulis , Y. Tao , Query processing in spatial network databases, in: VLDB, 2003, pp. 802–813 .

[14] J. Qi , R. Zhang , L. Kulik , D. Lin , Y. Xue , The min-dist location selection query, in: ICDE, 2012, pp. 366–377 .
[15] J. Qi , R. Zhang , Y. Wang , A.Y. Xue , G. Yu , L. Kulik , The min-dist location selection and facility replacement queries, World Wide Web 17 (6) (2014)

1261–1293 .

[16] S. Shang , B. Yuan , K. Deng , K. Xie , X. Zhou , Finding the most accessible locations: reverse path nearest neighbor query in road networks, in: SIGSPATIAL,
2011, pp. 181–190 .

[17] W. Sun , C. Chen , B. Zheng , C. Chen , L. Zhu , W. Liu , Y. Huang , Merged aggregate nearest neighbor query processing in road networks, in: CIKM, 2013,
pp. 2243–2248 .

[18] L.A. Tang , Y. Zheng , X. Xie , J. Yuan , X. Yu , J. Han , Retrieving k-nearest neighboring trajectories by a set of point locations, in: SSTD, 2011, pp. 223–241 .
[19] B. Thierry , B. Chaix , Y. Kestens , Detecting activity locations from raw GPS data: a novel kernel-based algorithm, Int. J. Health Geograph. 12 (11) (2013)

213 .

[20] W.R. Tobler , A computer movie simulating urban growth in the detroit region, Econ. Geogr. 46 (1970) 234–240 .
[21] M. Wang , H. Li , J. Cui , K. Deng , S.S. Bhowmick , Z. Dong , PINOCCHIO: probabilistic influence-based location selection over moving objects, TKDE 28 (11)

(2016) 3068–3082 .
[22] R.C. Wong , M.T. Özsu , A.W. Fu , P.S. Yu , L. Liu , Y. Liu , Maximizing bichromatic reverse nearest neighbor for L p-norm in two- and three-dimensional

spaces, VLDB J. 20 (6) (2011) 893–919 .
[23] R.C.-W. Wong , M.T. Özsu , P.S. Yu , A.W.-C. Fu , L. Liu , Efficient method for maximizing bichromatic reverse nearest neighbor, PVLDB 2 (1) (2009)

1126–1137 .

[24] B.J. Worton , Kernel methods for estimating the utilization distribution in home-range studies, Ecology 70 (1) (1989) 164–168 .
[25] T. Xia , D. Zhang , E. Kanoulas , Y. Du , On computing top-t most influential spatial sites, in: VLDB, 2005, pp. 946–957 .

[26] X. Xiao , B. Yao , F. Li , Optimal location queries in road network databases, in: ICDE, 2011, pp. 804–815 .
[27] D. Yan , Z. Zhao , W. Ng , Efficient algorithms for finding optimal meeting point on road networks, PVLDB 4 (11) (2011) 968–979 .

[28] M. Ye , P. Yin , W.-C. Lee , D.L. Lee , Exploiting geographical influence for collaborative point-of-interest recommendation, in: SIGIR, 2011, pp. 325–334 .
[29] M.L. Yiu , N. Mamoulis , D. Papadias , Aggregate nearest neighbor queries in road networks, TKDE 17 (6) (2005) 820–833 .

[30] D. Zhang , Y. Du , T. Xia , Y. Tao , Progressive computation of the min-dist optimal-location query, in: VLDB, 2006, pp. 643–654 .

[31] Y. Zheng , L. Zhang , X. Xie , W. Ma , Mining interesting locations and travel sequences from GPS trajectories, in: WWW, 2009, pp. 791–800 .
[32] L. Zhu , Y. Jing , W. Sun , D. Mao , P. Liu , Voronoi-based aggregate nearest neighbor query processing in road networks, in: SIGSPATIAL, 2010, pp. 518–521 .

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30475-4/sbref0032

	Place Your Next Branch with MILE-RUN: Min-dist Location Selection over User Movement
	1 Introduction
	2 Related work
	2.1 Min-dist location selection
	2.2 Max-inf location selection
	2.3 Efforts on mobile objects

	3 Preliminaries
	3.1 Mobile objects
	3.2 Capturing reference locations

	4 MILE-RUN problem
	5 Solutions to MILE-RUN
	5.1 Network nearest facility circle based method
	5.2 Local network based method
	5.3 Extended network method

	6 Cost analysis
	7 Performance study
	7.1 Experimental setup
	7.2 Experimental results

	8 Conclusions
	 Acknowledgments
	 References

