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Abstract—Collective Location Selection (CLS) aims to identify
k optimal sites for facility establishment to collectively maximize
user attraction. Traditional CLS approaches often overlook user
mobility and inter-facility competition, critical factors in real-
world scenarios. This paper introduces MC2LS, the first effort
on CLS that addresses these gaps by considering user mobility
and peer competition. Solving MC2LS is non-trivial due to its NP-
hardness. To overcome the challenge of pruning multi-point users
with highly overlapping minimum boundary rectangles (MBRs),
we develop a position count threshold and two square-based
pruning rules. We propose IQuad-tree, a user-MBR-free index, to
benefit the hierarchical and batch-wise properties of the pruning
rules. We present an (1 − 1

e
)-approximate greedy solution to

MC2LS, and empirical studies demonstrate the superiority of our
proposed solution over the state-of-the-art techniques.

I. INTRODUCTION

The ubiquity of mobile internet and GPS devices have led
to a surge in geo-tagged data, providing invaluable support for
location decision-making. Large corporations and chains, often
prioritize market share over individual facility impact, leading
to the development of Collective Location Selection (CLS)
strategies [1], which aims to identify a group of k optimal sites
among candidates to collectively maximize user attraction.
Traditional approaches measure location attractiveness based
on spatial proximity, assuming users are static. However, a
recent study on moving users [2], k-Collective Influential
Facility Placement (k-CIFP), has challenged this single-point
model through the use of multi-point semantics [3], where the
influence relationship is defined as a cumulative probability of
all positions of a user. Despite advancements, most CLS litera-
ture overlooks peer competitors due to the inherent complexity
of modeling and evaluation, which can significantly impair the
effectiveness of CLS models in competitive markets. To this
end, we propose a novel and more practical CLS problem
called Mobility-oriented Competitive-based CLS (MC2LS),
which considers both mobility and competition factors.

II. PROBLEM DEFINITION

Following the mobility-aware influence criterion [2], a
moving user o is represented by a set of r positions o =
{p1, p2, . . . , pr}. As both candidate locations for opening new
facilities (set C = {c1, c2, . . . , cn}) and existing facilities as
competitors (set F = {f1, f2, . . . , fm}) can exert influence

on users, we introduce a concept of abstract facility v, where
v ∈ C∪F . For user o, the cumulative influence probability is
defined as Prv(o) = 1−

∏r
i=1(1−Prv(pi)), accounting for all

positions of o. Here, Prv(pi) = PF (dist(v, pi)) denotes the
independent probability that o is influenced by v at position
pi ∈ o, with PF being a distance-based probability function
that can be adjusted to accommodate various influence pat-
terns. In practice, businesses prioritize either high-quality or
a broad range of users based on influence. A probabilistic
threshold τ helps balance this trade-off by filtering desired
users: If Prv(o) ≥ τ , v can influence user o. Given a user
set Ω = {o1, o2, . . . , on}, the subset Ωv consists of users
influenced by v, and inf(v) = |Ωv| quantifies v’s influence
value [3]. According to the evenly split competition model [4],
facilities that attract the same user equally capture the influ-
ence. Considering competitors Fo = {f |Prf (o) ≥ τ∧f ∈ F},
the competitive influence of candidate c on o is calculated as
cinf(c, o) = 1

|Fo|+1 . Then the competitive collective influence
of G (G ⊆ C) is computed as cinf(G) =

∑
o∈ΩG

1
|Fo|+1 ,

where ΩG = {o|Prc(o) ≥ τ ∧ c ∈ G ∧ o ∈ Ω}. Thus, MC2LS
aims to find an optimal candidate subset G ⊆ C ∧ |G| = k to
maximize its competitive collective influence.

III. IQUAD-TREE-BASED SOLUTION TO MC2LS

We can prove MC2LS to be isomorphic to the Maximum
k-Coverage problem, whose NP-hard property results in ex-
ponential complexity when enumerating all combinations of k
candidates out of n. Given that cinf(c) =

∑
o∈Ωc

cinf(c, o)
enables the exact competitive influence of every candidate,
greedy heuristics can find a near optimal solution in poly-
nomial time. Even so, exhaustive calculation cinf(c) for all
candidates still accounts for prohibitive complexity O((|C|+
|F |)|Ω|r). The challenge in designing efficient algorithms lies
in the significant overlap of the activity regions (MBRs of
positions) of moving users [3], making classical pruning rules
fail to exclude irrelevant users. Thus, the previous study [3]
had to shift its focus to eliminating candidates rather than
users. They employed an Influence Circle to measure multi-
point-based influence relationships: an abstract facility v can
(resp., cannot) attract a user o if all of o’s positions lie within
(resp., without) ϕ(v,mMR(τ, r)), which denotes a circle
centered at v with radius mMR(τ, r) = PF−1(1−(1−τ)1/r).
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To tackle the challenge, we propose a user-MBR-free
strategy via reverse deduction of mMR(τ, r), where r =
1/ log1−τ (1−PF (mMR(τ, r))). This allows us a new posi-
tion count threshold η(τ, PF, d̂) = 1/ log1−τ (1 − PF (d̂)) to
determine the influence relationship. If circle ϕ(v, d̂) encloses
⌈η(τ, PF, d̂)⌉ positions of user o, abstract facility v must
influence o. Based on η(τ, PF, d̂), we construct two square-
based pruning rules to filter out users for a batch of candidates.
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Fig. 1. Pruning rules and the square hierarchy index.

Influence Square (IS): As shown in Fig. 1(a), given a
square ABCD with diagonal lengths d̂, any abstract facility
v lying within the square can influence a user o, if at least
⌈η(τ, PF, d̂)⌉ positions of o are covered by ABCD. This can
be guaranteed by the aforementioned Influence Circle. Non-
Influence Radius (NIR): We define NIR as the maximum
mMR(τ, rmax) of all the users, where rmax = max{r|r =
|o| ∧ o ∈ Ω}. In Fig. 1(b), we can draw a NIR rounded
square based on ABCD. Then any abstract facility v located
within square ABCD cannot influence user o, if none of
o’s positions is inside the MBR (i.e., EFGH) of the NIR
rounded square. Thus we can efficiently prune users who are
necessarily influenced or not attracted in a given square.

Even if a user o fails to meet the IS rule, o may have
additional positions outside the IS region, indicating that o
could possibly satisfy an enlarged η(τ, PF, d̂) with longer d̂.
In Fig. 1(c), we extend d̂ to 2d̂, 4d̂, and so on, and verify if
the IS rule is satisfied. This manner motivates us to integrate
the pruning rules into Quad-tree to develop an IQuad-tree
(Influence Quad-tree) for indexing users and their positions.
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Fig. 2. The IQuad-tree index structure and an example.

The leaf node NL of an IQuad-tree comprises entries in the
form of ⟨rect,P,Ωinf ,Ωvrf ⟩. rect denotes the square of NL

with diagonal d̂. In the key-value set P , the key is user ID
oid and the value associates only the positions of oid located
inside NL.rect. The sets Ωinf and Ωvrf hold users that are
necessarily and possibly influenced by abstract facilities within
NL.rect. The users in Ωvrf \Ωinf need to be further verified.

For the entry ⟨rect,P,Ωinf , visited⟩ of a non-leaf node
NN , rect is the area enclosed by its four child squares. NN .P
is the union of P sets of child nodes. The set NN .Ωinf follows
the enlargement shown in Fig. 1(c). The binary flag visited
indicates whether NN has been traversed or not.

Based on IQuad-tree, we design a four-stage solution to
MC2LS. First, the IS and NIR pruning rules are utilized to
batch-wise identify the influence relationships between users
and abstract facilities in a node. The process is traversed recur-
sively from leaf nodes to larger regions. Second, the validation
Prf (o) ≥ τ is performed for users not pruned yet. Third, we
evaluate competitive influence of candidates cinf(c). Finally,
a greedy heuristic is used to gradually select k candidates
with the maximum cinf(c) at each step. As cinf(·) satisfies
the condition of a submodular non-decreasing function, the
heuristic guarantees an (1− 1

e )-approximation ratio.

IV. SUMMARY OF EXPERIMENTAL EVALUATION

We have investigated the performance of our IQuad-Tree-
based (IQT) solution compared to the adapted greedy version
of k-CIFP [2], following the same settings over real datasets.
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Fig. 3. Comparisons of performance and pruning rules.

As illustrated in Fig. 3(a), both the IS and NIR pruning rules
work effectively. Compared to IS, which imposes relatively
strict position counting within small squares, NIR exhibits
superior performance owing to its larger pruning areas. Given
a specific d̂, as τ increases, η(τ, PF, d̂) grows while the
NIR value declines, thereby reducing the efficiency of IS and
enhancing that of NIR. In comparison to the candidate-pruning
strategy [3], i.e., IA and NIB, our proposed IS and NIR rules
are more effective due to their batch-wise property.

Fig. 3(b) demonstrates the scalability with varying |Ω|,
where IQT significantly reduces the running time by one order
of magnitude compared to Baseline (exhaustively scanning all
user-abstract facility pairs). The comparisons across varying
parameters |C|, |F |, τ , k, d̂ and r are qualitatively similar,
where IQT exhibits the best efficiency, followed by IQT-C
(without employing the IA rule), k-CIFP and Baseline.
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