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Abstract
The location selection (LS) problem identifies an optimal site to place a new facility such that its influence on given objects 
can be maximized. With the proliferation of GPS-enabled mobile devices, LS studies have made progress for moving objects. 
However, the state-of-the-art LS techniques over moving objects assume the new facility has no competitor, which is too 
restrictive and unrealistic for real-world business. In this paper we study Competitive Location Selection over Moving objects 
(CLS-M), which takes into account competition against existing facilities in mobile scenarios. We present a competition-
based influence score model to evaluate the influence of a candidate. To solve the problem, we propose an influence pruning 
algorithm to prune objects who are either influenced by inferior candidates or affected by no candidate. Experimental study 
over two real-world datasets demonstrates that the proposed algorithm outperforms state-of-the-art LS techniques in terms 
of efficiency.

Keywords  Competitive location selection · Moving objects · Pruning strategy · Spatial data

1  Introduction

Location selection (LS) problems have been extensively 
studied in spatial databases. Given a set of objects � and a 
set of candidate locations C, the LS problem aims to find an 
optimal candidate location c ∈ C , such that c can influence 
a maximum number of objects. LS problems are widely used 
in many fields such as marketing [11], urban planning [18], 
monitoring wildlife [6], scientific research.

With the proliferation of GPS-enabled mobile devices, 
the location data can be easily collected. This enables us to 
consider the mobility of objects in the LS problems [10, 11]. 
Specifically, the authors in [11] investigate a generalized LS 
problem called PRIME-LS in which the influence between 
a facility and a moving object is modeled by a probabilistic 
relationship, instead of the traditional deterministic binary 
criterion (i.e., either influence or not). The probabilistic 
feature even makes PRIME-LS coincide with a common 
phenomenon that an object can be influenced by multiple 
facilities simultaneously. However, the PRIME-LS does 
not involve competition factor, which significantly limits its 
applications in the real world.

Consider that someone plans to open a convenience store 
and needs to choose an optimal location for it hoping that 
it can attract the maximum number of potential customers. 
Taking Fig. 1a as an example, there are two moving objects 
O1,O2 and two candidates c1, c2 . According to PRIME-LS, 
c2 is chosen as the optimal answer. Unfortunately, in many 
real-world scenarios, there are existing facilities of the same 
type (e.g., 7-eleven, FamilyMart) which makes it a competi-
tive market instead of an ideal condition without competi-
tor.1 As illustrated in Fig. 1b, there are two existing facilities 
near candidate c2 , while there is no competitor around c1 . In 
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that case, how can we choose the optimal result to gain bet-
ter economic benefits?

Recall that studies [3, 4] considered the impact of com-
petition among existing facilities nearby in the LS prob-
lem. However, their influence model is based on Bichro-
matic Reverse Nearest Neighbor (BRNN) criterion [5] and 
static single-point objects without considering the mobility. 
Hence, their competition-based techniques are unsuitable for 
solving the aforementioned problem.

To address the limitations of existing LS techniques, we 
study the competition-based LS problem in moving sce-
narios, called Competitive Location Selection over Moving 
objects (CLS-M), which takes into account both mobility 
and competition. We face the following two challenges: (1) 
It is not straightforward to evaluate and model the impact of 
existing facilities on candidates in moving scenarios. (2) The 
large amount of positions will incur substantial overhead for 
the evaluation of influence.

In this paper, we define the competitive influence based 
on two key concepts inspired by existing works. On the one 
hand, in the influence relationship model in [11], moving 
objects can be affected by multiple facilities simultaneously, 
which implies we can identify which facilities (or/and candi-
dates) will join the competition for a specific moving object. 
On the other hand, according to the competition model in [8, 
9], if n facilities all capture (i.e., influence) the same object, 
the capture is divided into n equal parts. Hence, incorporat-
ing the two above aspects, we design a competition-based 
influence score model, which is detailed in Sect. 3.

To solve the problem efficiently, we propose an Influ-
ence Pruning Algorithm (IPA) which prune objects who are 
either influenced by inferior candidates or not affected by 
any candidate. Experiments show that IPA is superior in 
efficiency and it is at least one order of magnitude better than 
the baseline algorithm.

The contributions of this paper can be summarized as 
follows:

•	 We introduce a more practical location selection task, 
namely CLS-M, which takes both mobility and competi-
tion factors into consideration.

•	 We propose an efficient algorithm called IPA to solve the 
proposed problem. Two pruning strategies are designed 
to reduce the computational complexity.

•	 Comprehensive experiments are conducted on real-
world datasets from two cities. The results demonstrate 
that, comparing to the baseline and the state-of-the-art 
algorithm in [11], our proposed solution significantly 
improves the efficiency.

The rest of the paper is organized as follows. In Sect. 2, 
the related works are reviewed. In Sect. 3, we give out the 
definition of CLS-M. In Sect. 4, we present our solution. 
In Sect. 5, the result of those experiments is reported. We 
conclude this paper in Sect. 6.

2 � Related Works

In this section, we discuss related efforts in LS problems 
under various scenarios.

One direction is the maximum influence-based LS (Max-
inf). In Max-inf problems, influence refers to the number (or 
probability) of objects (e.g., persons, vehicles) that may visit 
(or be affected by) a particular location if some facility is 
placed there. Most of these studies assume that an object’s 
location is a static single point and only one facility will 
exhibit influence on it exclusively. The Max-inf-based LS 
problem is closely related to the BRNN concept [5]. Specifi-
cally, Max-inf LS aims to find a location with the maximum 
influence. Xia et al. [13] defined the influence of a location 
as the total weight of its RNNs (reverse nearest neighbors) 
and developed a distance metric, called minExistDNN, to 
prune search space based on R-tree. Yan et al. [14] relaxed 
the assumption from NN facility to (1 + �)NN, where � was 
a user-specified value. Wong et al. [12] studied a similar 
problem, called MaxBRkNN, in which all the kNN facili-
ties exhibited influence on objects. Yiu et al. [15] further 
extended the LS problem, in which they focused on the total 
distance-weighted qualities of surrounding facilities of query 
locations. In these studies, the object location is a certain 
single point, which is not consistent with reality.

Cheema et al. [1] studied the problem of probabilistic 
reverse nearest neighbor based on the possible-world seman-
tics. Following the same setting, Zhan et al. [16] aimed to 
find top-k most influential facilities over uncertain objects. 
Zheng et al. [19] proposed a partition-based algorithm and 
many pruning techniques to solve a similar problem. Although 
these studies modeled an object as multiple position instances, 
the multiple positions are very near around the actual position 
of the object, while locations of a moving object cover a large 

Fig. 1   Location model
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geographic area. The wide-range region of a moving object 
leads to overlapping with other objects, which makes prun-
ing techniques and location selection approaches designed for 
uncertain model are not available for our problem. Besides, in 
a possible world, each object was still represented by a single 
position and was limited to be influenced by only one facility 
based on NN metric.

Wang et al. [11] introduced a generalized LS problem 
called PRIME-LS, which utilized mobility and probability 
factors. The authors presented a criterion that used cumula-
tive probability for all positions along the moving object to 
judge the impact. Compared with uncertain model [1], the 
experiment in [11] proved that the moving object model was 
better in both efficiency and effectiveness. As it is more rel-
evant to real scenarios, we will adopt that criterion to judge 
whether a candidate c ∈ C influences a moving object or not. 
Zhang et al. [17] study a maximum coverage-based LS prob-
lem, which finds a set of facilities that can cover the maximum 
number of trajectories. However, the competitive impact of 
existing facilities in these studies was not considered.

Traditional competitive location selection problems [7] 
assumed that a firm entered in a market where some existing 
firms had been operating, aiming at choosing the optimal 
location to attract the maximum market share under com-
petition. In these problems, the spatial location informa-
tion of competitors was obtained in advance. Studies [8, 9] 
introduced a new type of competitive LS problem. It added 
new facilities to the existing ones so that the new facilities 
had the maximum influence. They assumed if two facilities 
captured the same object, they equally shared the influence 
on it. This model can be used to evaluate the situation that 
multiple facilities affect the same object, and thus, it can be 
a basis of our competitive influence model.

Huang et al. [3, 4] considered the impact of existing facil-
ities on location selection under the Max-inf-based model. 
The definition of influence relationship was based on nearest 
neighbor. It pruned the computation by establishing a mini-
mum facility circle for objects to find candidate locations 
with the greatest influence. Because they all assume that the 
object is a static single point. The solution of this problem is 
not applicable to the mobile scenarios. Therefore, in Sect. 3, 
we build a more general model for the competitive relation-
ship in moving scenarios.

3 � Problem Definition

In this section, we first introduces some preliminaries about 
the competition-based influence score and then formulate 
the CLS-M problem.

3.1 � Preliminary

A location p is a point in a two-dimensional Euclidean 
space, denoted by its geographical coordinate (i.e., latitude 
and longitude). Given two locations p1 and p2 , the distance 
between them is denoted by dist(p1, p2) . In this paper, we 
use a set of discrete positions O = {p1, p2,… , pr} to rep-
resent a moving object. We denote candidate locations for 
new facilities to deploy as C = {c1, c2,… , cn} and exist-
ing facilities as F = {f1, f2,… , fm} . The probability that an 
object at location p is influenced by a facility v ∈ C ∪ F is 
denoted by Prv(p) . Following the setting of distance-based 
probability function PF(⋅) in [11], Prv(p) can be computed 
as Prv(p) = PF(dist(v, p)) . To put it another way, a moving 
object O is influenced by v if and only if there is at least a 
position pi of O that is influenced by v. Assume that, the 
probability that O is influenced by a facility v at any position 
pi ∈ O(i ∈ [1, r]) is independent of those at other positions; 
we have Prv(pi) = PF(dist(v, pi)) . Considering all the posi-
tions of object O, the cumulative probability that O is influ-
enced by v is defined as Prv(O) = 1 −

∏r

i=1
(1 − Prv(pi)).

Definition 1  (Influence value): Given a moving object O 
and a probability threshold � , candidate c (resp., facility f) 
can influence O if and only if Prc(O) > 𝜏 (resp., Prf (O) > 𝜏 ). 
Further, given a set � of moving objects, the influence value 
of c (resp., f), denoted as inf(c) (resp., inf(f)), is the number 
of moving objects in � that are influenced by c (resp., f).

According to Definition 1, the influence value of f or c 
indicates the maximum number of moving objects which 
might be influenced by f or c under the constraint of a user-
specified probability condition.

3.2 � Competition‑based Influence Score

In this section, we take into account existing facility com-
petitors against the new sites to design a novel competitive 
influence relationship over moving objects, which is based 
on two concepts from existing studies.

On the one hand, according to the competition model in 
[8, 9], if two facilities are located in equal distance from an 
object based on BRNN, it is regarded that they both capture 
the object and their capture is divided into equal parts. In 
other words, if some facilities capture the same object, they 
equally share the influence on it.

On the other hand, the PRIME-LS model for moving 
objects [11] assumes each object can be affected by multiple 
facilities simultaneously. Specifically, for a moving object, 
if the influence values of multiple facilities are all beyond 
the given probability threshold, the facilities will all exhibit 
influence on the object.
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Incorporating the two aforementioned aspects, we 
design a competition-based influence score model which 
extends the competition concept in static LS problems to 
moving scenarios. To facilitate exposition and understand-
ing, we first introduce some necessary notations.

We denote �(c) as the set of objects that are influ-
enced by candidate c, and �(c) can be formalized as 
�(c) = {O ∣ Prc(O) ≥ �, c ∈ C,O ∈ �}.

Similarly, a set of facilities that inf luence mov-
ing object O, denoted by �−1(O) , can be defined as 
�
−1(O) = {f ∣ Prf (O) ≥ �, f ∈ F,O ∈ �}.

If an object is influenced by a facility or candidate, we 
call there is an influence relationship between them. The 
above formulas indicate that, for a candidate, it is required 
to consider not only the objects influenced by itself, but 
also the existing facilities which have influence relation-
ships with some of the influenced objects. At this time, 
there will be a competitive relationship between candi-
dates and the existing facilities for objects that they both 
influence. Then how do we quantify the competition-based 
influence score?

Intuitively, we have the two following observations that 
have impact on the influence score. First, the more objects 
are influenced by c, the higher score c might achieve. Sec-
ond, the less competitors (i.e., existing facilities) which 
scramble the same objects influenced by c also raise 
the score. Accordingly, we define the influence score as 
follows.

Definition 2  (Influence score): Given a set �(c) of moving 
objects influenced by c and a set �−1(Oi) of existing facili-
ties that influence Oi , where Oi ∈ �(c) , the competition-
based influence score for candidate c can be described as 
follows:

For an object Oi that is influenced by candidate c, the 
fraction 1

|�−1(Oi)|+1
 means that c and all the existing facilities, 

which influence Oi , equally share the influence on Oi . In 
other words, the influence probability on Oi is equally split 
by c and the facilities. Thus score(c) indicates the sum of the 
influence probabilities each of which corresponds to an 
object influenced by c.

Example 1  We assume that candidates c1, c2, c3 , facilities 
f1, f2 and moving objects O1,… ,O4 have the influence rela-
tionships shown in Table 1, which follow the cumulative 
probability influence criterion. Supposing that we intend 

(1)score(c) =
∑

Oi∈�(c)

1

|�−1(Oi)| + 1
.

to select a candidate to place the new facility, c1 will be 
the optimal result by directly applying PINOCCHIO-VO 
[11]. Unfortunately, two competitors f1, f2 will share the 
influence, and thus score(c1) = 0.6 . Hence, if we take into 
account the competition from existing facilities, c3 has the 
highest influence score, i.e., score(c3) = 1 , and c3 is picked 
as the optimum.

Notably, facilities may have different ratings, which are 
usually based on comprehensive evaluation, e.g., service 
qualities, price, environment, etc. In that case, our com-
petitive influence model can be easily adapted and applied. 
Specifically, by normalizing the ratings of facilities (or/and 
candidates) which influence the same object, facilities will 
capture different influence probabilities in proportion to their 
ratings.

3.3 � Problem Definition

We are now ready to define the top-k Competitive Loca-
tion Selection over Moving objects (CLS-M) problem 
addressed in this paper. We return top-k results based on 
which further decisions can be made for other factors, such 
as rental [2].

Definition 3  (CLS-M): Given a set of candidate locations 
C, a set of existing facilities F, a set of moving objects � 
each of which has a series of positions {p1, p2,… , pr} , and 
a user-specified number k (k ≤ |C| ∧ k ∈ Z) , the CLS-M 
problem aims to mine a subset C�

⊂ C ∧ |C�| = k , such 
that for each ci ∈ C� , we have score(ci) ≥ score(cj) where 
cj ∈ (C − C�).

4 � Solution to CLS‑M

According to Definitions 1 and 2, a straightforward solution 
to the CLS-M problem is to exhaustively check all candi-
dates. Specifically, for each candidate c, we compute the 

Table 1   An example of 
influence relationships

Candidate Existing 
facilities

Influ-
enced 
objects

c1 f1,  f2 O1, O2

c2 f2 O3

c3 O4
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cumulative influence probabilities over moving objects to 
derive �(c) and further to obtain the influence relationships 
between objects and existing facilities. Then, we compute 
influence score for every candidate and the top-k ones with 
superior influence scores are the optimal answer. Although 
PINOCCHIO-VO [11] can be used to reduce the compu-
tational complexity for evaluating influence probabilities 
between object-facility pairs, it is still very costly to calcu-
late all the influence relationships of objects that are related 
to all the candidates.

4.1 � Pruning Rules

We notice that not all objects are influenced by candidates. 
Then before computing the influence score, the objects that 
are not influenced by candidates can be pruned to avoid the 
influence relationship calculation with existing facilities. We 
call it influence relationship pruning rule. In Fig. 2a, each 
arrow indicates an influence relationship from a candidate/
facility to an object. To solve CLS-M, we firstly need to 
identify �(c) s for candidates. Then it is required to compute 
the influence relationships between objects in �(c) s and the 
corresponding existing facilities. With the help of the above 
pruning rule, the influence relationship calculations for O6 
and O7 with the corresponding facilities are avoided, as nei-
ther of them is influenced by any candidate. Furthermore, 
we can reduce the computation according to the following 
theorem.

Theorem 1  For ∀c ∈ C , we have score(c) ≤ inf (c).

Proof  As shown in Equation (1), for each Oi ∈ �(c) , we have 
|�−1(Oi)| ≥ 0 . The equal sign, as well as the maximum value 
of 1

|�−1(Oi)|+1
 , holds when there is no competitor, i.e., Oi is 

exclusively influenced by c. It means if every Oi ∈ �(c) is 
not influenced by any existing facility, c obtains the maxi-
mum influence score, i.e., score(c) ≤ inf (c).

According to Theorem 1, the influence value of c is the 
upper bound of score(c), which can be used for pruning infe-
rior candidates. Ordered by influence score, the k-th largest 
score of candidates can be used as a threshold. Once the 
upper bound of a candidate is below the threshold, other 
candidates with less upper bounds do not need to compute 
the exact influence score. We call it influence value prun-
ing rule.

The pruning strategy can be implemented using a max-
heap sorted by inf(c). As illustrated in Fig. 2b, score(c1) 
and score(c2) are derived and the current maximum score 
is score(c2) = 1.5 , which is set to be the current thresh-
old. For candidate c3 , its upper bound of influence score 
is max(score(c3)) = inf (c3) = 1 < score(c2) = 1.5 , which 
means the calculation of score(c3) is redundant. Therefore, 
as shown in Fig. 2a, there is no need to compute the influ-
ence relationship for O3 with existing facilities, as O3 is influ-
enced by c3.

Below, incorporating the influence relationship pruning 
rule and influence value pruning rule, we present the influ-
ence pruning algorithm (IPA) to significantly improve the 
efficiency for solving the CLS-M problem.

4.2 � Influence Pruning Algorithm

Algorithm 1 outlines the IPA algorithm. We use a max-heap 
HC and a min-heap HM to apply the pruning strategies. 
The entry of HC and HM is in the form of ⟨c.loc, inf (c)⟩ 
and ⟨c.loc, score(c)⟩ , and ordered by inf(c) and score(c), 
respectively.

We pre-calculate and store the corresponding sets of 
objects in Tr(C) which are influenced by candidates. Candi-
date locations in HC indicate the upper bound of influence 
score. We first calculate the score of the top-k candidates 
in HC and insert the pairs ⟨c.loc, score(c)⟩ into HM (lines 
2–11). The minimum score is taken as the current threshold 
(line 12). For each remaining candidate in HC, if inf(c) is 
less than the current threshold, which means the candidates 
in HM are results, the algorithm is finished based on the 
influence value pruning rule (lines 13–15). Otherwise, we 
further validate their scores (lines 17–22). If the score is 
greater than the current threshold, the corresponding candi-
date is inserted into HM. We update the threshold with the 

Fig. 2   An illustration of pruning rules
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minimum score in HM (lines 23–26). Once score(c) is found 
to be less than the current threshold, c can be discarded. 
Finally, we return elements in HM as the top-k answers to 
the CLS-M problem. Notably, in the process of score calcu-
lation, it is unnecessary to perform the repeated traversals 
for facilities and objects. Key flags are used to judge whether 
an object O has computed with the facilities which influence 
O (lines 4–9,17–22). When the flag equals to 0, we need to 
both compute and record the number of facilities that affect 
the object. If the flag is equal to 1, we only compute the 
score. Key flags avoid the repeated traversal of the influence 
calculation.

4.3 � Theoretical Analysis

In this part, we provide a theoretical study on IPA. The 
worst case occurs when every candidate influences all the 
objects and candidates have the same score. In this case, 
the two pruning rules cannot be used and the complexity is 
O(|�| ⋅ (|F| + |C|)) . The complexity of the influence rela-
tionship calculation between objects and existing facilities 
is O(|�| ⋅ |F|) . The complexity of evaluating the influence 
score of candidates is O(|�| ⋅ |C|).

However, the positions of moving objects are with skewed 
distributions in common cases. Then, the influence relation-
ship pruning rule can dramatically reduce the number of 
objects that are not influenced by candidates. Similarly, 
candidates are randomly located, then, the influence value 
pruning rule will further prune candidates with less scores, 
as well as the influence relationships of the corresponding 
objects. Hence, the number of candidates to be calculated 
is reduced to |C′| and the moving objects are reduced to |�′| 
( |C′| ≪ |C| and |𝛺′| ≪ |𝛺| ). Hence, the average complex-
ity of common cases is O(|��| ⋅ (|F| + |C�|) . Experiments 
in Sect. 5 will validate the analysis. The best case occurs 
when the top-k candidates have no competitors. In the spe-
cial case, the performance of IPA is equivalent to that of 
PINOCCHIO-VO.

5 � Experiment

In this section, we investigate the performance of our solu-
tion from a variety of aspects.

5.1 � Experiment Setup

1. Datasets Table 2 describes two real-world datasets we 
use in the experiments.2 The positions of check-ins in Four-
square are all located in Singapore, while those in Gowalla 
are mainly in California. The results in [11] show that using 
24–48 positions can achieve a trade-off between accuracy 
and cost. We follow the setting and synthesize larger data-
sets (100k objects) using normal distribution based on users’ 
positions in Gowalla. We choose positions from check-in 

Table 2   Description of real-world datasets

Foursquare (F) Gowalla (G)

Number of users (objects) 2321 10162
Number of check-ins (positions) 83615 381165
Avg check-ins 36 37
Min check-ins 2 2
Max check-ins 330 780 2  Both datasets are available from the work [11].
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coordinates as candidate locations by random uniform sam-
pling. The existing facilities use real facility dataset.3

2. Algorithms

•	 NA: The straightforward method that exhaustively com-
putes the cumulative influence probabilities for all the 
candidate-object and facility-object pairs.

•	 PIV: It refers to PINOCCHIO-VO in [11].
•	 IPA: The algorithm is described in Algorithm 1.

3. Environment All the algorithms are implemented in C++, 
running on a 3.3 GHz machine with 8 GB RAM under Win-
dows 10 (64 bit).

The default values of constant k, probability threshold � , 
the numbers of candidates and existing facilities are set to 
10, 0.9, 100 and 200, respectively.4

5.2 � Experiment Results

Effect of |�| . We first study the performance by varying 
the number of objects. In order to highlight the scalability 
with respect to |�| on efficiency, we conduct experiments 
on Foursquare and Gowalla with real and synthetic user 
datasets, whose cardinalities are relatively small and large. 
Figure 3 shows the results. Compared with small |�| s, the 
pruning effect of IPA is more obvious for larger ones. As 
illustrated in Fig. 3b, the running time of IPA is remark-
ably stable with the increase of |�| , and the other algorithms 
grow linearly, which means IPA is more scalable for massive 
objects.   

Effect of |C|. We investigate the performance with respect 
to the number of candidates. The number of existing facili-
ties is set to 1k. As shown in Fig. 4, IPA exhibits the best 
performance, followed by PIV and NA. The running cost of 
IPA is at least one order of magnitude lower than NA. When 
|C| grows, the costs of NA and PIV are stable. The reason 
is that, before the score computation, both NA and PIV 
have to perform a full traversal on the influence relationship 

Fig. 3   Effect of |�|

(a) Foursquare (b) Gowalla

Fig. 4   Effect of |C|

(a) Foursquare (b) Gowalla

3  Facility dataset is available from the work [10].
4  Most of the default values are consistent with PINOCCHIO-VO in 
[11], which makes experiment results more comparable.
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calculation between all facilities and objects, which means 
|C| has no effect. For IPA, as the number of candidates to 
be accessed increases, the number of objects influenced by 
these candidates also raises. The main overhead of IPA is 
due to the number of facilities that influence objects.

Figure 5 shows that the running time and the number of 
objects to be calculated have a similar trend. As |C| increases, 
the pruning effect of IPA drops. When the number of can-
didates is very large, IPA will degenerate to PIV. Because 
candidates will cover almost all the objects. In Figs. 4b and 
5b, the processing time of IPA when |C| is set to 500 is less 
than the case of 400. Affected by the data distribution, there 
are fewer competing existing facilities near the new added 
candidate locations, which leads to a decrease in the actual 
location data involved in the calculation.

Effect of |F|. In this part, we vary the number of exist-
ing facilities both exponentially and linearly. Since the 
results on both datasets are qualitatively similar, due to 
space constraint, we report the results varying |F| exponen-
tially in Foursquare and linearly in Gowalla, respectively. 
As shown in Fig. 6, the computation costs of algorithms 
grow when |F| increases exponentially (in F) and linearly 
(in G). The main reason is that the number of objects to 
be accessed is basically stable, and the time increases with 
|F|. The slowest growth rate of IPA shows its superiority. 

This is because both pruning strategies work well. The 
pruning effect is more obvious when |F| is larger.

Effect of k. As illustrated in Fig. 7, the computational 
time of IPA can be reduced by more than an order of mag-
nitude compared to NA, and it is also significantly better 
than PIV. As k increases, efficiencies of the three algo-
rithms are all stable. This is because, with the help of 
max-heap, the number of objects that are accessed does 
not increase noticeably with k.

Effect of � . As shown in Fig. 8, the running costs of 
NA and PIV do not change significantly when varying the 
threshold, while the computation time of IPA drops when 
� increases. This is because NA and PIV need to perform 
a full traversal calculation on the influence relationships 
between facilities and objects. When the threshold is set 
to 0.1, the performance of IPA degrades to PIV. In addi-
tion, the definition of influence relationship in [11] shows 
that � represents the balance between distance and object 
quality. The larger threshold value is, the more attention 
is paid to the contribution of distance to the influence 
relationship.

Figure 9 reports the effect of � on the pruning strat-
egies. When � is set very small, candidates which are 
accessed will affect almost all the objects. At this time, 
all algorithms need to traverse all the objects. Moreover, 
as � increases, the number of objects to be accessed will 

Fig. 5   Effect of pruning

(a) Foursquare (b) Gowalla

Fig. 6   Effect of |F|

(a) Foursquare (b) Gowalla
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decrease. Hence, the larger � is, the more effective prun-
ing effect and better performance of IPA is.

6 � Conclusions

In this article, we investigate a novel competitive LS prob-
lem called CLS-M, which takes into account competition 
against existing facilities in moving scenes. Specifically, 

based on a novel competition-based influence score model, 
top-k optimal locations are selected. To solve the problem 
under the large amount of data, we develop an algorithm 
called IPA which leverages two pruning strategies. Experi-
mental study over two real-world datasets demonstrates 
significant superiority of our algorithm in comparison with 
the baseline method and a state-of-the-art LS technique in 
terms of efficiency. In future work, we will also consider 
the influence of cooperation.

Fig. 7   Effect of k 

(a) Foursquare (b) Gowalla

Fig. 8   Effect of �

(a) Foursquare (b) Gowalla

Fig. 9   Effect of pruning

(a) Foursquare (b) Gowalla
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