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Abstract
In this paper we propose and study the problem of k-Collective influential facility 
placement over moving object. Specifically, given a set of candidate locations, a 
group of moving objects, each of which is associated with a collection of reference 
points, as well as a budget k, we aim to mine a group of k locations, the combina-
tion of whom can influence the most number of moving objects. We show that this 
problem is NP-hard and present a basic hill-climb algorithm, namely GreedyP. We 
prove this method with (1 − 1

e

) approximation ratio. One core challenge is to identify 
and reduce the overlap of the influence from different selected locations to maximize 
the marginal benefits. Therefore, the GreedyP approach may be very costly when the 
number of moving objects is large. In order to address the problem, we also propose 
another GreedyPS algorithm based on FM-sketch technique, which maps the mov-
ing objects to bitmaps such that the marginal benefit can be easily observed through 
bit-wise operations. Through this way, we are able to save more than a half running 
time while preserving the result quality. We further present a pair of extensions to 
the problem, namely k-Additional and k-Eliminative Influential Facility Placement 
problems. We also present corresponding approximate solutions towards both exten-
sions and theoretically show that results of both algorithms are guaranteed. Experi-
ments on real datasets verify the efficiency and effectiveness for all these algorithms 
comparing with baselines.
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1  Introduction

Location Selection (ls) problem has always received great attention due to the value 
of application in many aspects. Given a set of moving objects � , each of which is 
represented using a set of reference positions, and a set of candidate locations C, 
many methods have been proposed to detect an optimal c ∈ C , such that c can influ-
ence (i.e., affect/cover) the maximum number of moving objects [29]. Finding such 
an optimal location from candidates to establish a new facility has a wide spectrum 
of applications such as marketing, urban planning [35], monitoring wildlife [14], 
scientific research, etc. In ls problem, influence refers to the number (i.e., probabil-
ity) of persons (i.e., moving objects) that may visit (i.e., be influenced) if a facility is 
placed at a particular location.

There exists several different criteria for evaluating the influence. For instance, 
according to BRNN [13], the influence of a candidate c is defined as the number of 
objects whose nearest neighbors are c. Recently, Wang et al. [25] introduced a gen-
eralized ls problem called PRIME-LS which takes into account mobility and proba-
bility factors in location selection. The authors employed the cumulative probability 
to judge whether an object is influenced by a particular location or not. We compare 
both influence criteria using an example in Fig. 1. On one hand, nearest neighbor 
based conventional ls techniques [13] will report c

1
 , but not c

2
 , influences O

1
 . On the 

other hand, the cumulative probability (according to [25]) of O
1
 being influenced by 

c
2
 might be higher than c

1
 as O

1
 has four positions, namely p

12
, p

13
, p

14
, p

15
 , which 

are close to c
2
 . In light of that, we select to follow the influence model of [25] and 

focus on the cumulative probability settings in this work.

1.1 � Motivation

The proposed algorithm in [25], namely PINOCCHIO, is substantially efficient in 
finding only one location. However, if a user asks to set up a group of homogene-
ous facilities and aims to cover as many people as possible, this method can not be 
directly and effectively applied. Reconsider Fig. 1, assume that following the accu-
mulative probability influence criteria, c

2
 , c

3
 can both influence O

1
 , O

3
 , O

4
 ; and c

1
 

Fig. 1   Motivating example
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can influence O
2
 ; and c

4
 influences O

4
 . Suppose we are selecting 2 locations to place 

some facilities, directly applying PINOCCHIO [25] and select the best two candi-
dates will produce a results set {c

2
, c

3
} . However, {c

2
, c

1
} or {c

3
, c

1
} can eventually 

influence more objects than {c
2
, c

3
} . That is, PINOCCHIO is not suitable to such 

collective ls problem.
Instead of finding the optimal location, this scenario requires to find a group of k 

locations. The problem of mining a set of k locations from candidates to influence 
the maximal persons is also widely required in practice, e.g., setting up k billboards, 
running k new restaurants in a city, opening k stores to sell mobile phones, etc.. Min-
ing k locations problem has appeared in literature [18, 20, 22, 34]. In these works, 
they extract the positions in a moving object as a representative position, and if the 
distance between this position and candidate c is lower than a certain value, then 
it is considered that the candidate c can influence the moving object. For example, 
if candidate c overlaps the moving object, c can influence this object [18]. What’s 
more, these methods judging whether candidate c can influence a moving object or 
not for mining k locations problem are tightly coupled with a few specific applica-
tions and can’t be directly applied to other scenarios. For example, [18] illustrates 
moving a object must traverse candidate c, thus, candidate c can influence moving 
object. However, in the case of setting up billboard (i.e., monitoring wildlife), the 
user (i.e., animals) only need to see the billboards (i.e., cameras) within a range. 
Therefore, as discussed before, we employ a more general rule of [25] to determine 
whether candidate c can influence moving object.

Unfortunately, given a set C of n candidate locations and m moving objects, the 
time complexity of calculating the number of moving objects influenced (follow-
ing the cumulative probability model of [25]) by each candidate is O(mn). The time 
complexity of finding all subsets that each subset contains k elements from candi-
date set C, and calculating the moving objects set influenced by candidate should be 
Ck
n
O(km) . Afterwards, we need to select a set from Ck

n
 subsets which can influence 

the maximum number of moving objects. This whole process is exponential and the 
time consumption is unacceptable. Specifically, we define it as the  k -Collective 
Influential Facility Placement problem and shall theoretically show that it is NP-
Hard. To address the problem, we propose a pair of algorithms, namely GreedyP 
and GreedyPS, which solve the k-Collective Influential Facility Placement problem 
under the same cumulative influence probability criteria with [25]. GreedyP is an 
approximated solution that is guaranteed to provide an (1 − 1

e
) approximation ratio 

for the k-Collective Influential Facility Placement problem. In order to reduce the 
time consumption of the algorithm, we further propose GreedyPS utilizing FM 
sketch techniques, and theoretically prove its effectiveness.

In fact, it is not limited to the previously mentioned scenarios in real life. In some 
cases, a merchant may have set up some facilities in a city and now need to expand 
its business scope. On the premise that some facilities have been deployed, addi-
tional k facilities need to be added to maximize the number of moving objects. We 
define it as the  k -Additional Influential Facility Placement problem and show 
that this problem can be degenerated into k-Collective Influential Facility problem. 
Therefore, we only need to make a simple modification to previous algorithms, and 
the approximation ratio is still (1 − 1

e
) . Another possible scenario is that there are 
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too many facilities(i.e., � facilities) currently deployed by the merchant, which not 
only causes a waste of resources but also increases the operation costs. At this time, 
the merchant needs to remove k facilities from the existing facility network, so as to 
maximize the number of objects influenced by ( � − k ) facilities. We define it as the 
k-Eliminative Influential Facility Placement problem and clarify that it is not fea-
sible to delete the location with the least impact from existing ones using the greedy 
strategy. Instead, we use the solutions in k-Collective Influential Facility Placement 
problem to find � − k locations.

1.2 � Challenge and algorithm

Given the k-Collective Influential Facility Placement problem, we are requested 
to select the desired number k of locations to set up service facilities so that these 
facilities can serve as many users as possible. This problem can be attributed to a 
max k-cover problem. From an algorithmic perspective, the max k-cover problem is 
NP-Hard and cannot be solved in polynomial time. To address that, we proposed a 
GreedyP algorithm, using the idea of the hill-climb strategy to iteratively select the 
points that influences the most users. This process is continued for k times to obtain 
the most influential k facilities required.

However, in the actual execution, we found that the calculation of whether the 
user trajectory is influenced by a certain candidate is costly. In this regard, we apply 
the pruning strategy proposed by [25] to avoid calculating some users who’s mov-
ing trajectories are far from the candidate, thus reduce time in impact calculation. 
At the same time, after selecting a candidate point, we should also delete the users’ 
trajectories affected by the selected candidate point, so as to avoid recalculating the 
affected user trajectories in the next location selection. This task is also a time-con-
suming operation. What’s more, when the number of user trajectory is huge, record-
ing and calculating the user’s impact of each candidate point requires a lot of space 
and time.

To solve this problem, we proposed to use the FM-sketch method to unevenly 
hash the user trajectory into a 0–1 array of length L, which means that when the user 
influences the candidate, a certain position in the 0–1 array of the candidate will 
change into 1. When calculating the number of users affected by the candidate, you 
only need to count the number of 1 in the array. Besides, after selecting a candidate 
point, to eliminate the influence of the candidate, we only need to perform 0–1 bit 
operation. It will largely reducing the time cost. What’s more, to alleviate the colli-
sion problem of the hash operation, in order to improve the accuracy of the calcula-
tion, we propose to use multiple (i.e., w) hash arrays to improve the accuracy.

1.3 � Contributions

The contributions of this paper can be summarized as follows:

–	 We introduce a novel location selection task, namely the k-Collective Influential 
Facility Placement problem, and theoretically prove this problem is NP-Hard.
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–	 We present a greedy algorithm with an (1 − 1

e
) approximation ratio.

–	 We propose another algorithm by employing FM Sketch to further improve the 
efficiency and provide the corresponding theoretical study.

–	 Experimental evaluations on real-world datasets show that our methods are effec-
tive and efficient.

–	 We extensively present two more general problems, and propose approximate 
solutions correspondingly.

The rest of the paper is organized as follows. We review the related work in Sect. 2. 
The formalized problem definition is given in Sect. 3. Afterwards, we present our 
solutions and conduct theoretical studies in Sect. 4. In Sect. 5, we present two other 
general extensions to the k-Collective Influential Facility Placement problem and 
give the corresponding solutions. The experimental results are demonstrated in 
Sect. 6. Lastly, we conclude our work in Sect. 7.

2 � Related work

In this section, we discuss related efforts in location selection as well as the recent 
maximum coverage problems.

2.1 � Location selection

There have been increasing research efforts in ls problem under various applications 
[1, 10, 24–29, 31, 32, 36]. Most of these studies assume that user’s locations are 
static and only the most influential location is retrieved. Xia et al. [29] defined the 
influence of a location as the total weight of its reverse nearest neighbors (RNNS). 
Sun et  al. [24] validated all clients and their corresponding BRNN sets and pro-
posed three pruning techniques to tighten the search space. Yan et al. [31] further 
relaxed the criterion from NN facility to (1 + �) ∗ NN , where � is a user-specified 
value. Wong et al. [27] studied a similar problem, called MaxBRkNN, in which all 
kNN facilities exhibit influence on objects. Zhou et al. [36] proposed MaxFirst to 
solve MaxBRkNN. The solution partitioned the space into quadrants iteratively and 
pruned the unpromising candidates using upper and lower bounds. Gao et  al. [7] 
aims to find mutual nearest neighbor of users and facilities, it focus on the nearest 
neighbor to provide services such as taking a taxi and so on. Our work only con-
cerned about whether the candidate location can affect the user in order to select the 
most influential facility point. Chen et al. [3] aims to find the co-movement pattern 
to achieve trajectory compression and prediction of future motion trajectories, which 
is different from our work. Recently, Wang et al. [25] introduced a generalized ls 
problem called PRIME-LS, which utilizes mobility and probability factors. In this 
work, they presented a rule that uses cumulative probability for all positions along 
the moving object to judge the impact. As this rule is more relevant to real scenar-
ios, we will adopt that rule to judge that whether a candidate location c ∈ C impacts 
a moving object.
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Notably, in this work, we consider only the distance factor in testing whether 
a facility will influence some trajectories. In fact, there may exist many other 
criteria to evaluate the influence, especially social influence, which has been 
extensively studied recently. For instance, direct social information metrics 
adopt the number of followers [2] or entropy [23] as the measure for social influ-
ence; hyperlink-based metrics may adopt influence rank [9] or variations of Pag-
eRank [11] to evaluate the influence; machine-learning-based metrics employ 
learning models to predict the influence [5, 15] of an arbitrary object.

2.2 � Maximum coverage problems

Maximum coverage problem has great utility for several real-world applications 
[8, 17, 18, 20–22, 30, 33, 34]. In these methods, every user is modeled as a mov-
ing object. Xu et  al. [30] proposed group locations selection problem to find 
the minimum number of multiple locations with influence regions, such that all 
the objects can be covered. Mitra et  al. [20] proposed three different applica-
tions, namely TOPS, TUMP and TIPS, respectively. TOPS [22] mainly showed 
a multi-resolution clustering based indexing framework called NETCLUS. It 
exhibits practical response times and low memory footprints. TUMP focused 
on providing good quality of experience (QoE), which differs from our prob-
lem. TIPS [21] is closely related to the TOPS problem, which aims to minimize 
the maximum inconvenience, i.e., minimizing the extra distance travelled by a 
commuting user in order to avail a service at her nearest service location. Li 
et  al. [18] aimed to find k locations set, reversed by the the maximum number 
of unique trajectories, in a given spatial region. In brief, if a candidate c is in 
the object, it can influence this moving object. Zhang et  al. [34] proposed and 
studied the problem of trajectory-driven influential billboard placement, which 
finds a set of billboards within the budget to influence the largest number of tra-
jectories. As long as the position in a trajectory falls within a certain radius of 
the candidate, it is believed that candidate can influence the trajectory. In these 
works, they extract the positions in the trajectory as a representative position, 
and if the distance between this position and candidate c is lower than a certain 
value, then it is considered that the candidate c influence the trajectory. Guo 
et al. [8] and Zhang et al. [33] illustrated that given candidate set (bus trajecto-
ries) and trajectories with longitude, latitude, timestamp and interest. In these 
scenes, k bus trajectories carrying advertisement to influence maximum users 
are returned, which are different from our work.

Reconsider Fig. 1, we illustrate the different result if the influence criteria varies. 
For instance, candidate c

1
, c

2
 can’t influence any of the objects according to [18]. 

The rules for determining the impact in [22, 34] are similar, and c
1
, c

2
 can affect 

both O
1
 and O

2
 . Comparing with these works, the cumulative probability proposed 

in [25], c
1
 only influences O

1
 , c

2
 influences O

1
 and O

2
 . In this paper, we employ the 

influence setting of [25] and present a pair of algorithms to find k locations in candi-
date set which can affects the largest number of moving objects.
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3 � Preliminary and problem definition

In this section, we begin by introducing some terminology that is necessary for the 
definition of the problem as well as the influence criteria that decides whether a can-
didate affects a moving object (user).

3.1 � Preliminary

A location p is a point in a two-dimensional Euclidean space, denoted by latitude 
and longitude. Given two locations p

1
 and p

2
 , the distance between them is denoted 

by dist(p
1
, p

2
) . In this paper, we use a set of discrete positions O = {p

1
, p

2
, ..., pr} to 

represent a moving object. We denote candidate locations for new facilities to deploy 
as C = {c

1
, c

2
, ..., cn} . The probability that an object at location p is influenced by a 

facility c ∈ C is denoted by Prc(p) . As we are studying a general problem that may 
also be used in domains including all types of facility placement applications, where 
distance is the common factor among all these domains, we select to focus on dis-
tance here although other factors may also play a role in specific scenarios (e.g., 
content of an advertising balloon, altitude of a relay station, etc.). Therefore, Prc(p) 
can be computed as Prc(p) = PF(dist(c, p)) . Hereby, PF(⋅) is a kernel function that 
monotonically decreases. As a result, the influence probability only depends on the 
distance. O is influenced by c if and only if there is at least a position pi of O influ-
enced by c. The probability that O is influenced by c, namely cumulative probability, 
can be defined as follows.

Definition 1  Given candidate location c and a moving object O with r positions 
{p

1
, p

2
, ..., pr} , the cumulative influence probability of O being influenced by c, 

denoted by Prc(O) , is defined as: Prc(O) = 1 −
∏r

i=1
(1 − Prc(pi)) [25].

Definition 2  Given a moving object O, a candidate location c and a probability 
threshold � , c can influence O if and only if Prc(O) ≥ � . Further, given a set of 
mobile object � , the influence value of c, denoted as inf(c), is the number of mobile 
objects in � that are influenced by c [25].

Prc(O) measures the extent to which O is influenced by c. Given a set of objects 
� = {O

1
,O

2
, ...,Om} and a user-specified probability threshold � , we can evaluate 

inf (cj)(cj ∈ C) for every candidate location.

Example 1  (See Fig.  1) We only use two moving objects O
1
,O

2
 and candidate 

c
1
, c

2
 as examples. Assume the independent influence probabilities of c

1
 at posi-

tions p
11

 , p
12

 , p
13

 , p
14

 and p
15

 are 0.5, 0.1, 0.2, 0.15 and 0.12, respectively. Then 
Prc

1

(O
1
) = 1 − (1 − 0.5)(1 − 0.1)(1 − 0.2)(1 − 0.15)(1 − 0.12) = 0.73 . Simi-

larly, since the probabilities of c
1
 influencing positions p

21
, p

22
, p

23
, p

24
 and p

25
 are 

0.25, 0.35, 0.33, 0.3 and 0.38, respectively. Prc
1

(O
2
) = 0.86 . If � is set to 0.75, c

1
 

only influences O
2
 but not O

1
 , although O

1
 even has the NN position p

11
 . Hence, 
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inf (c
1
) = 1 . On the other hand, if Prc

2

(O
1
)=0.8 and Prc

2

(O
2
)=0.79, then c

2
 influ-

ences both O
1
 and O

2
 . That is, inf (c

2
) = 2.

3.2 � Problem definition

We are now ready to define the k-Collective Influential Facility Placement problem 
to be addressed in this paper.

Firstly, we extend Definition 2 in order to evaluate the number of objects influ-
enced by a set of candidates.

Definition 3  Given a candidate set S, S = {c
1
, c

2
, ..., ck} . 

�(S) = |{O|Prci (O) ≥ �, ci ∈ S,O ∈ �}| . �(S) denotes the total number of moving 
objects that are influenced by candidate set S.

Then, we are ready to formally present the definition of our problem.

Definition 4  Given a set of candidate locations C = {c
1
, c

2
, ...cn} , a set of moving 

objects � = {O
1
,O

2
, ...Om} where Oi = {p

1
, p

2
, ..., pr} , the budget number of new 

facilities k ( k ≤ n ). The k-Collective Influential Facility Placement problem aims 
to mine ∃S ⊆ C ( |S| = k ) to maximize �(S).

Example 2  Consider Table 1 as an example, which lists the information that every 
location c can influence a set of objects.1 Assume we need to find two locations from 
C, i.e., k = 2 . According to the table, O

2
 and O

3
 are influenced by c

1
 . O

1
,O

2
 and O

4
 

are influenced by c
2
 . Therefore, when k is set as 2, S = {c

1
, c

2
} is the best choice as 

it can influence all the objects of O
1
,O

2
,O

3
 and O

4
.

Table 1   The objects influenced 
by candidates

Candidate The objects 
influenced 
by c

i

c
1

O
2
,O

3

c
2

O
1
,O

2
,O

4

c
3

O
4

1  In the following of this paper, we shall use user and object interchangeably for ease of presentation.
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4 � Solutions to k‑collective influential facility placement problem

Intuitively, a brute-force approach to address the problem in Definition  4 can be 
described as follows. Find all subsets containing k elements from C, compute the 
number of objects influenced by every subset, i.e., �(⋅) , and finally return the sub-
set with the maximum �(⋅) . However, the time complexity of this process is obvi-
ously exponential. As we shall prove immediately, the problem in Definition  4 is 
NP-Hard. Therefore, one practical way to address the problem is to find an approxi-
mation algorithm that runs in polynomial time. To this end, we firstly propose a 
basic greedy algorithm to address this problem. In order to further reduce the run-
ning time, we also provide an more efficient solution utilizing FM Sketch technique 
[6, 19].

Before presenting our basic solution, we firstly provide a theoretical study show-
ing that the problem in Definition 4 is NP-Hard. It is not hard to prove that our tar-
get, i.e., k-Collective Influential Facility Placement problem with respect to �(⋅) , is 
equivalent to the well-known Max k-cover problem.

Definition 5  R = {a
1
, a

2
, ..., an} , Ri represents a subset of R, P(R) is the collection of 

Ri , P(R) = {R
1
,R

2
, ...,Rl} . Max k -cover is the problem of selecting k subsets from 

P(R) such that their union set contains as many points as possible [4].

Theorem 1  The k-Collective Influential Facility Placement problem in Definition 4 
is NP-hard.

Proof  Given � = {O
1
,O

2
, ...,Om} , let Tr(ci) denote the user sets influenced by ci and 

Tr(ci) ⊆ 𝛺 , and let Q = {Tr(c
1
), Tr(c

2
), ..., Tr(cl)} . Selecting a group of k locations 

from C to affect the most objects is equivalent to extracting k subsets from Q to 
influence the maximum number of elements from � . Thus, k-Collective Influential 
Facility Placement problem in Definition 4 is the same as the Max k-cover problem 
in Definition 5. As mentioned in [4], the Max k-cover problem has been proven to be 
NP-hard. Therefore, the problem in Definition 4 is NP-hard. 	�  ◻

4.1 � GreedyP algorithm

4.1.1 � Algorithm design

As the target problem is NP-hard, we shall seek for an approximated solution 
that can address the task in polynomial time. Intuitively, a popular and easy way 
to address Max k-cover is greedy approach. Inspired by that, we design a basic 
greedy solution, namely GreedyP (short for Greedy PRIME-LS) towards the 
k-Collective Influential Facility Placement problem. The procedure of GreedyP 
algorithm is outlined in Algorithm  1. The algorithm begins by computing the 
sets Tr(C) = {Tr(ci)|ci ∈ C} via PINOCCHIO Algorithm [25] (Line 1). Besides, 
we initialize the target set S as an empty set (Line 2). Afterwards, we perform k 
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iterations to select the locations one after another. In each iteration, it selects the 
site si which can influence the maximum number of objects. If a site si is selected, 
we immediately delete the object influenced by si from Tr(C) (Lines 3–8). Finally, 
after k iterations, it returns the target set S (Line 9).

Algorithm 1: GreedyP Algorithm.
Input: The set of candidates C;
Input: The set of Object Ω;
Input: The number of new facilities k;
Output: The set of selected locations S which k elements;

1 Calculate the object set influenced by every candidate, Tr(C);
2 S = ∅;
3 foreach i to k do
4 find si ∈ C − S, where the value of inf(si) is maximum;
5 S = S ∪ si
6 each sj ∈ C − S
7 delete Tr(sj) ∩ Tr(S) from Tr(C);

8 return S;

Example 3  Reconsider Table 1 as an example, assuming k = 2 . In the first iteration, 
candidate c

2
 is selected as it can influence the most number of moving objects, i.e., 

O
1
 , O

2
 and O

4
 . Thus, the value of inf (c

2
) is the maximum. We merge c

2
 into set 

S. Then, we delete the moving objects influenced by c
2
 . Afterwards, we perform 

the second iteration. In this round, c
1
 can influence O

3
 , and c

3
 influences no object. 

Therefore, we shall select c
1
 into set S. Thus, c

2
 and c

1
 can influence four moving 

objects in total.

4.1.2 � Theoretical study

In this part, we shall theoretically prove that the results quality of our GreedyP 
algorithm is guaranteed. To prove that, we shall firstly introduce a group of defi-
nitions and lemmas.

Definition 6  Consider an arbitrary function �(⋅) that maps subsets of a finite ground 
set U to non-negative real numbers. We say that � is submodular if it satisfies a nat-
ural “diminishing returns” property: the marginal gain from adding an element to a 
set is at least as high as the marginal gain from adding the same element to superset. 
Formally, a submodular function satisfies �(A ∪ {v}) − �(A) ≥ �(B ∪ {v}) − �(B) , 
for all elements v and all pairs of sets A ⊆ B ⊆ U.

Lemma 1  For a non-negative, monotone submodular function � , let S be a set of size 
k obtained by selecting elements one at a time, each time choosing an element that 
provides the largest marginal increase in the function value. Let S be a set that maxi-
mizes the value of � over all k-element sets. Then �(S) ≥ (1 −

1

e
) ⋅ �(S∗) , where S∗ is 

the optimal solution; in other words, S provides an (1 − 1

e
)-approximation ratio. [12]
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Afterwards, we shall show that the evaluated function �(⋅) in our problem defi-
nition is also submodular in Lemma 2. Combined with Lemma  1, we can further 
illustrate the approximation rate guarantee of the greedy algorithm.

Lemma 2  The function �(⋅) defined in Definition 3 is non-negative, monotone, and 
submodular.

Proof  According to Definition  3, �(C) denotes the number of moving objects 
influenced by C. Let Tr(ci) be the moving object set influenced by ci , i.e., 
Tr(ci) = {O

1
,O

2
, ...,Om}.

Firstly, ∀A ∈ C , �(A) ≥ 0.
Thus, the function �(⋅) is non-negative.
Secondly, ∀A ∈ C , �(A) ≥ 0.
∀e, e ∈ C − A, �(e) ≥ 0 , �(A ∪ e) ≥ �(A).
Thus, the function �(⋅) is monotone.
Lastly, Suppose A ⊆ B ⊆ C, 𝜎(A) ≥ 0, 𝜎(B) ≥ 0.
∀e, e ∈ C − B , we can get: 

Case 1:	 I f  Tr(A) = ∅  a n d  Tr(e) ∩ Tr(B) = ∅  .  �(A ∪ e) − �(A) = inf (e)  . 
�(B ∪ e) − �(B) = inf (e) . Thus, �(A ∪ {e}) − �(A) ≥ �(B ∪ {e}) − �(B).

Case 2:	 I f  P = Tr(e) ∩ Tr(A) = {O
11
,O

12
, ...,O

1j} .  A s s u m e :  Q = Tr(e) ∩ Tr(B) = 
{O

11
,O

12
, ...,O

1j, ...,O1i}, then ‖Q − P‖ ≥ 0. �(A ∪ {e}) − �(A) = �(B ∪ {e})

−�(B) + ‖Q − P‖ . Thus, �(A ∪ {e}) − �(A) ≥ �(B ∪ {e}) − �(B).

According to (1) and (2), the function �(⋅) is submodular. 	�  ◻

Theorem 2  GreedyP algorithm as shown in Algorithm 1 can achieve (1 − 1

e
) approx-

imation ratio.

Proof  It can be directly proved according to Lemma 1 and Lemma 2. 	�  ◻

Theorem 3  The time complexity of Algorithm 1 is O(n�mr�) + O(knm2) , where k is 
the budget number of locations required, m is the number of moving objects and n is 
the number of candidates.

Proof  The time complexity of calculating object set for every candidate is O(n�mr�) , 
where n′ is the number of candidates to be validate after apply pruning rules , r′ is 
the number of positions that has to be used for influence computation after apply-
ing Strategy 2 , m is the number of moving objects. In our work, we only use the 
pruning rules and Strategy 2 [25]. The time complexity of deleting a process that 
already affects the object of S is O(knm2) in the worst case. This process takes a lot 
of time and reduces the efficiency of the algorithm. Thus, the total time complexity 
is O(knm2) + O(n�mr�) . 	�  ◻
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Notably, the time consumption in Algorithm 1 is mainly affected by two aspects. 
On the one hand, it takes a lot of time to calculate a set of each candidate that affects 
moving objects in Line 1. We utilize an efficient algorithm called PINOCCHIO that 
leverages on two pruning rules based on a distance measure. These rules enable us 
to prune many inferior candidate locations prior to influence computation, paving 
the way to efficient and accurate solution. On the other hand, we need to delete the 
moving objects influenced by S in Line 7. Although PINOCCHIO provides a good 
solution for the first aspect, the running time of the algorithm maybe costly in large 
dataset as the second aspect also takes much time. In order to address this problem, 
we further present a more efficient solution in next part.

4.2 � GreedyPS algorithm

In order to reduce the time cost of the second aspect aforementioned, i.e., recogniz-
ing the moving objects that shall be deleted after current iteration (Line 7 in Algo-
rithm 1), we propose to utilize FM sketch strategy. FM algorithm proposed by Fla-
jolet and Martin [6] is a bitmap based algorithm that can efficiently estimate the 
number of distinct elements (data points). Let F be a bitmap of length L with subin-
dexed [0, L − 1] , and all bits are initialized as 0 (i.e., F[j] = 0 for 0 ≤ j ≤ L − 1 ). Sup-
pose the h(⋅) is a randomly generated hash function2 which maps the identification 
of each object into an integer in [0, L − 1] . An FM sketch on P = {O

1
,O

2
, ...,Ol} , 

denoted as F(P) , is a bitmap with length L which is defined as:

As h(⋅) is a randomly generated hash function, a single FM sketch may not accu-
rately accomplish the task. In order to improve the accuracy of FM algorithm, mul-
tiple copies (say w) of FM sketches are constructed based independently generated 
hash functions. Let f(P) represent the set of w FM sketches generated over P. That 
is, f (P) = {F

(P)

1
,F

(P)

2
, ...,F(P)

w
} , where each element Oi ∈ P is hashed into these FM 

sketches, respectively, as described above.
Suppose f is applied over two sets of objects, e.g., f(P) and f(Q), generated by the 

same L and the same set of hashing functions. We define the bit-union of both sets in 
terms of the bitwise-or operator (denotes by ∨ ) as follows.

Definition 7  Let f (P) = {F
(P)

i
∶ 1 ≤ i ≤ w} , f (Q) = {F

(Q)

i
∶ 1 ≤ i ≤ w} , we 

define the bit-union operation of f(P) and f(Q), denoted using f (P)⊕ f (Q) , 
as {F

(P)

i
∨ F

(Q)

i
∶ 1 ≤ i ≤ w} , where each F

(P)

i
∨ F

(Q)

i
 is also a bit-

map with subindexes [0, L − 1] , such that for 1 ≤ i ≤ w ∶ ∀0 ≤ j ≤ L − 1 , 
(F

(P)

i
∨ F

(Q)

i
)[j] = 1 iff F

(P)

i
[j] = 1 or F

(Q)

i
[j] = 1.

F(P) ∶ ∀0 ≤ j ≤ L − 1, F(P)[j] = 1

iff ∃Oi ∈ P,h(Oi) = j, 1 ≤ i ≤ l.

2  In fact, FM sketch contains a series of other techniques, we only employ the hash strategy herein.
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An important feature of FM sketch is that the sketch for the union of a pair of 
arbitrary sets P and Q can be expressed as the bit-union operation between their 
corresponding sketches, which can be easily interpreted using bitwise-or opera-
tion in bitmaps. Given a set of w hash functions and two collections, P and Q, we 
have f (P ∪ Q) = f (P)⊕ f (Q) . This can be easily justified based on Definition 7.

The FM sketch can be used to speed up the update stage of GreedyP Algo-
rithm. The marginal utility of P and Q can be denoted as 𝛥 = f (P)⊕ f (Q) − f (P) , 
where “−” is the bitwise-minus operation for each bitmap F. The GreedyP algo-
rithm shown in Algorithm 1 can be changed as follows. The procedure of decid-
ing whether a candidate location influences the largest number of users can now 
be easily interpreted as iterating each bit of f(P) (w arrays with length L) and find-
ing the bitmap that has the largest number of “1”.

Algorithm 2, namely GreedyPS (short for Greedy PRIME-LS with Sketches), 
details the modified algorithm using FM Sketch. The algorithm begins by com-
puting the sets Tr(C) and converts moving object information to 1 or 0 in bitmap 
(Line 1). Then, similar to Algorithm 1, it initializes the target set S as an empty 
set (Line 2). In each of k iterations, it selects the site si that can influence the max-
imum number of moving objects, and deletes the moving objects influenced by si 
immediately. During this process, we update the corresponding bitmaps using bit-
wise-or operation in order to delete the moving objects influenced by S. Finally, 
we return the target set S (Line 9).

Example 4  Reconsider Table 1 as an example, and suppose we adopt only one FM 
sketch, i.e., a bitmap for each location candidate. Without loss of generality, we 
design a simple bitmap with 4 bits, each of which corresponds to a moving object. 
As c

1
 can influence O

2
,O

3
 , the corresponding bitmap is 0110. As c

2
 can influence 

O
1
,O

2
,O

4
 , its bitmap is 1011. c

3
 can influence O

4
 , its bitmap is 1000. In the first 

iteration, we put c
2
 into S as it has the most “1”. The current bitmap becomes 1011, 

and the bitmaps of c
2
 and c

3
 are accordingly changed to 0100 (1011 ∨ 0110 -1011) 

and 0000 (1011 ∨ 1000 -1011), respectively. In the second iteration we can choose 
c
1
 directly without recomputing the influenced moving objects. Finally, we return 

S = {c
1
, c

2
}.

However, if only one bitmap is adopted in our solution, the resulting set will 
be definitely poor. The reason is that multiple moving objects are mapped to the 
same bit in bitmap during the execution of the algorithm, which causes a large 
deviation. Therefore, we map moving objects to multiple bitmaps using different 
hash functions to reduce the bias. Later, we show that increasing the number of 
bitmaps can improve accuracy.

Theorem 4  Given two sets of moving objects A and B, where |A| ≥ |B| and let �(w)(⋅) 
denote the number of “1” after ⋅ mapped into w bitmaps, then the following holds:

∀w > 1,Pr[𝜙(w)(A) ≥ 𝜙(w)(B)] > Pr[𝜙(1)(A) ≥ 𝜙(1)(B)].
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Proof  When w = 1 , the probability that �(1)(A) is larger than that �(1)(B) can be 
recorded as Pr[�(1)(A) ≥ �(1)(B)] = �.

The probability that �(w)(A) is larger than that �(w)(B) is at least 1 − (1 − �)w , 
denoted as Pr[�(w)(A) ≥ �(w)(B)] ≥ 1 − (1 − �)w.

Pr[�(w)(A) ≥ �(w)(B)] − Pr[�(1)(A) ≥ �(1)(B)] = 1 − (1 − �)w − � ≥ 0.
Specifically, if and only if w = 1 , 1 − (1 − �)w − � = 0 . That is, ∀w > 1 , 

Pr[𝜙(w)(A) ≥ 𝜙(w)(B)] > Pr[𝜙(1)(A) ≥ 𝜙(1)(B)] . 	�  ◻

Remark 1  Pr[�(w)(A) ≥ �(w)(B)] is monotonically increasing. When w is close to infin-
ity, the value is close to 1. In that case, Pr[�(w)(A) ≥ �(w)(B)] − Pr[�(1)(A) ≥ �(1)(B)] 
is close to 1 − �.

Based on the above theorem, we can also observe that the results quality of 
GreedyPS algorithm is similar to GreedyP when enough number of bitmaps are 
adopted.

Algorithm 2: GreedyPS Algorithm.
Input: The set of candidates C;
Input: The set of Object Ω;
Input: The number of new facilities k;
Output: The set of locations S with k elements;

1 Calculate the object set influenced by every candidate, Tr(C), and compute FM
sketch sets for each candidate, f(Tr(ci)), ci ∈ C;

2 S = ∅, f(current) = ∅;
3 foreach i to k do
4 find si, where the count of ‘1’ in bitmaps is the maximum;
5 S = S ∪ si, f(current) = f(current)⊕ f(Tr(si));
6 each sj ∈ C − S f(Tr(sj)) = f(current)⊕ f(Tr(sj))− f(current);

7 return S;

Theorem  5  The time complexity of Algorithm  2 is O(n�mr�) + O(nmw) + O(knw) , 
where m is the number of moving objects, n is the number of candidates and w is the 
number of bitmaps.

Proof  The time complexity of calculating object set for every candidate is 
O(n�mr�) , as mentioned in [25]. The time complexity of mapping moving 
objects into w bitmaps is O(nmw). The time complexity of updating bitmaps 
by utilizing bitwise-or is O(knw). Therefore, the complexity of the algorithm is 
O(n�mr�) + O(nmw) + O(knw) . 	�  ◻

According to the time complexity analysis, when the number of bitmaps is very 
large, the efficiency brought by the bitwise-or operation is reduced. Therefore, there 
exist a tradeoff between the efficiency and accuracy in the algorithm. In light of that, 
the algorithm can be improved in the following way. The upper bound of the mar-
ginal utility for any location sj is its own utility. Thus, if the current best marginal 
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utility of another location si is already greater than that, it is not required to do the 
union operation with sj . If the locations are sorted according to their marginal utility 
in descending order, the scan can stop as soon as the first such site sj is encountered.

In our implementation, the FM sketches are stored 32 bits. This allows handling 
of roughly 232 number of moving objects. The length 32 is chosen since the bitwise-
or operation of two bitmaps is extremely fast in modern operating systems.

5 � Two extensions

In this part, we discuss a pair of extensions to the k-Collective Influential Facility 
Placement problem for more general scenarios. Two algorithms are presented to 
address these general problems; theoretical guarantees for the result quality are also 
provided for both algorithms.

5.1 � k‑Additional influential facility placement problem

In practice, the network of facilities may not be built overnight, instead the facilities 
are always incrementally built in batches. For instance, hotel groups always plan and 
announce new hotels within a country in batches;3 a set of new gas stations within a 
region are planned at the same time, in addition to the existing service network.4 In 
these cases, it can be regarded as, that there are � existing facilities, an additional k 
facilities need to be added to maximize the number of moving objects that are influ-
enced. It can be formalized as the followings.

Definition 8  Given a set of exiting locations E = {e
1
, e

2
, ...e�} , a set of moving 

objects � = {O
1
,O

2
, ...Om} where Oi = {p

1
, p

2
, ..., pr} , a set of candidate locations 

C = {c
1
, c

2
, ...cn} , the budget number of new facilities k ( 0 < k ≤ n ). The k-Addi-

tional Influential Facility Placement problem aims to mine ∃S ⊆ C , subject to 
|S| = k , such that �(E ∪ S) is maximized, hereby �(⋅) follows Definition 3.

In fact, the problem mentioned in Definition 8 will degenerate to the k-Collective 
Influential Facility Placement problem when � is fixed as 0. The previous methods 
mentioned in Sect. 4 can be applied to this new problem, and our solution has the 
same theoretical guarantee.

Theorem 6  The k-Additional Influential Facility Placement problem in Definition 8 
is NP-hard.

3  https​://www.hotel​manag​ement​.net/franc​hisin​g/marri​ott-annou​nces-7-new-hotel​s-acros​s-3-brand​s-for-
china​.
4  https​://www.dalla​snews​.com/busin​ess/local​-compa​nies/2017/12/07/exxon​-to-open-eight​-mobil​-gas-
stati​ons-in-mexic​o-with-plans​-for-50-by-early​-2018/.

https://www.hotelmanagement.net/franchising/marriott-announces-7-new-hotels-across-3-brands-for-china
https://www.hotelmanagement.net/franchising/marriott-announces-7-new-hotels-across-3-brands-for-china
https://www.dallasnews.com/business/local-companies/2017/12/07/exxon-to-open-eight-mobil-gas-stations-in-mexico-with-plans-for-50-by-early-2018/
https://www.dallasnews.com/business/local-companies/2017/12/07/exxon-to-open-eight-mobil-gas-stations-in-mexico-with-plans-for-50-by-early-2018/
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Proof  For the existing moving objects set � , there are already existing locations set 
E. The purpose of adding k new candidates from C is to maximize the number of 
objects covered in the union of E and S ⊆ C(|S| = k) . It is equivalent to finding k 
locations in the set S ⊆ C , which influence the most moving objects in the new set 
�� = � − Tr(E) . That is, this new problem can be degenerated to the k-Collective 
Influential Facility Placement problem. Following Theorem 1, the problem in Defi-
nition 8 is also NP-hard. 	�  ◻

Now, we are well prepared to solve new problem. For the k-Additional Influ-
ential Facility Placement problem, similar to GreedyP, we also give a specific 
solution called (� + k)-Greedy algorithm outlined in Algorithm 3. Above all, the 
algorithm begins by calculating the set Tr(E) (Line 1). Then, the moving objects 
that are already influenced by E, namely Tr(E), are removed from � (Line 2). 
Finally, utilize GreedyP (resp., GreedyPS) algorithm to extract k locations as 
results, which are denoted as S (Lines 3-5).

Obviously, given Theorem 6 and Algorithm 3, we can easily derive that Algo-
rithm 3 achieves (1 − 1

e
) approximation ratio with respect to k-Additional Influ-

ential Facility Placement problem. The proof straightforwardly follows that of 
Theorem 2.

Notably, in Line 4 of Algorithm 3, GreedyPS can be adopted as an alternative 
choice other than GreedyP. In that case, the result quality will be sacrificed for 
better efficiency according to the discussion in Sect. 4.2.

Theorem  7  The time complexity of Algorithm  3 is 
O(��mr�) + O(�m2) + O(n�m�r��) + O(knm�2) , where m is the number of moving 
objects, n is the number of candidates and � is the number of existing locations.

Proof  The time complexities of calculating object sets for existing locations and 
candidates are O(��mr�) and O(n�m�r��) , respectively, as mentioned in [25]. m′ is the 
number of deleting the moving objects influenced by existing E. The meaning of r′′ 
is the same as r′ , with different values. The time complexities of deleting the objects 
influenced by E and S are O(�m2) and O(knm�2) , respectively. Therefore, the com-
plexity of the algorithm is O(��mr�) + O(�m2) + O(n�m�r��) + O(knm�2) . 	�  ◻

Algorithm 3: k-Addition Algorithm.
Input: The set of existing locations E, the set of candidates C, the set of moving

object Ω, the number of additional facilities k;
Output: The set of locations S with k elements;

1 Calculate the objects set influenced by every candidate, Tr(E);
2 Delete the moving objects influenced by set E, Ω′ = Ω − Tr(E);
3 S = ∅;
4 S=GreedyP(C,Ω′,k) (or GreedyPS(C,Ω′,k));
5 return S;
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5.2 � k‑Eliminative influential facility placement problem

From a different perspective, converse to the examples discussed in Sect.  5.1, 
there are also cases that existing facilities need to be closed in a batch due to 
unsatisfied economic returns or redundant coverage. This scenario further extends 
the problem in Definition 8, as it can be regarded as the case for k < 0 . In this 
case, k facilities with inferior influences need to be removed from existing service 
network. Such a problem can be formalized as follows.

Definition 9  Given a set of exiting locations E = {e
1
, e

2
, ...e�} , a set of moving 

objects � = {O
1
,O

2
, ...Om} where Oi = {p

1
, p

2
, ..., pr} , the budget number k of facil-

ities to be eliminated, ( k ≤ � ). The k-Eliminative Influential Facility Placement 
problem aims to find S ⊆ E , subject to |S| = k , such that �(E ⧵ S) is maximized, 
hereby �(⋅) follows Definition 3.

Intuitively, this new scenario cannot seem to be directly convertible to either 
of the two problems proposed above, which perform addition of facilities while 
this new scenario focuses on elimination. We can not simply greedily select a 
facility with the minimal marginal influence iteratively, as this will definitely 
introduce much errors. For instance, suppose there are three existing facilities 
E = {e

1
, e

2
, e

3
} , four moving objects � = {O

1
,O

2
,O

3
,O

4
} and budget k = 1 ; and 

e
1
 individually influences {O

2
,O

3
,O

4
} , e

2
 individually influences {O

2
,O

3
} and e

3
 

individually influences {O
1
} . If we select an existing facility with the minimal 

influence, e
3
 has to be chosen here, leading to a result with �(E ⧵ S) = 3 as {e

2
, e

3
} 

influences {O
2
,O

3
,O

4
} . However, this choice is definitely inferior to eliminating 

e
2
 , which will result in �(E ⧵ S) = 4 as {e

1
, e

3
} influences {O

1
,O

2
,O

3
,O

4
}.

In spite that greedy elimination cannot be applied in the problem, we can also 
present effective solutions based on the framework presented above. Instead of 
directly eliminating facilities from E, we consider the problem from the opposite 
way. Deleting k locations from set E to maximize the influence of the rest facili-
ties, is in fact equivalent to the problem of finding � − k facilities from E, such 
that the influence of these selected facilities with respect to � is maximized. In 
this regard, the problem in Definition 9 is the same as the k-Collective Influential 
Facility Placement problem in Definition 4 where E is set as the candidate set and 
� − k corresponds to the budget number of new facilities.

Therefore, the k-Eliminative Influential Facility Placement problem is also NP-
hard and can be solved by GreedyP and GreedyPS by setting the candidate set as 

Table 2   Description of real-
world datasets

Foursquare Gowalla

Number of users (objects) 2321 10,162
Number of check-ins (posi-

tions)
167,231 381,165
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E and budget number as � − k . Consequently, the GreedyP solution is also guar-
anteed to achieve (1 − 1

e
) approximation ratio in this problem.

6 � Experiment

6.1 � Experiment setup

6.1.1 � Datasets

Table 2 describes the two real-world datasets we use in the experiments. We adopt 
check-in data here for two reasons: the effectiveness can be compared with check-in 
ground-truth, which is actual number of visitors for each place of interest; the prob-
ability models of check-in with respect to distance have been justified. The position 
of check-ins in Foursquare are all located in Singapore, while those in Gowalla are 
mainly in California.

6.1.2 � Experimental settings

GreedyP and GreedyPS algorithms are both tested in the experiments. They are 
implemented in C++, running on a 3.3 GHz machine with 8 GB RAM under Win-
dows 7 (64 bit).

In line with the settings in paper [25], the default values of probability threshold � 
in Foursquare and Gowalla are set as 0.99 and 0.7, respectively.

The source code of this work can be found in our project homepage5.

6.1.3 � Algorithms

–	 PINOCCHIO: It refers to the solution in [25]. We evaluate the inf (⋅) for all candi-
dates, and select the top k candidates with the maximum inf (⋅) as the results.

–	 GreedyP: The GreedyP algorithm in Algorithm 1.
–	 GreedyPS: The GreedyPS algorithm in Algorithm 2.

In the following, we evaluate the performances for all methods in the aspects of the 
number of objects influenced by candidates as well as the time cost for returning the 
results.

5  https​://lihui​xidia​n.githu​b.io/malos​/.

https://lihuixidian.github.io/malos/
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6.2 � Experiment results

6.2.1 � Experimental study of k‑collective problem

In this section, experiments about the effectiveness for GreedyPS are averaged after 
10 groups of experiments. In each of the following experiments, we randomly select 
600 positions from the corresponding dataset as the candidate locations to place the 
facilities.

First, we fixed the number of bitmaps and candidates. When the value of k is con-
stantly changing, the following experimental results are obtained.

Figure 2 shows the results when the number of bitmaps is fixed at 20, the number 
of candidates is 600 in Foursquare dataset. Figure 2a shows the number of objects as 
the value of k varies. Figure 2b illustrates the time cost for PINOCCHIO, GreedyP 
and GreedyPS. GreedyP returns the maximum number of objects and its time con-
sumption is the worst. Although PINOCCHIO takes the least time, the number of 
objects influenced by candidates is also small.

(a) (b)

Fig. 2   Effect of k (Foursquare, 20 bitmaps)

(a) (b)

Fig. 3   Effect of k (Gowalla, 30 bitmaps)
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Figure 3 shows the results when the number of bitmaps is fixed at 30, the number 
of candidates is 600 in Gowalla dataset. Figure 3a shows the number of objects as 
the value of k varies, while Fig. 3b illustrates the time consumption. Generally, The 
number of objects using GreedyPS is over 90% for GreedyP. Moreover, GreedyPS 
takes only half the running time for GreedyP. However, the time consumption for 
PINOCCHIO is the least and the number of objects using PINOCCHIO algorithm 
is only a half of GreedyP. We can find a phenomenon that the time does not change 
significantly as the value of k varies. The reason for this phenomenon may be that 
the time consumption is the longest to remove the overlap of trajectory sets influ-
enced by candidates in the first iteration.

The following part explains the number of moving objects influenced by candi-
dates and time consumption as the number of candidates varies.

Figure 4 displays the results, the value of k is 10 and the number of bitmaps is 
fixed at 20 in Foursquare. Figure  4a shows the number of objects influenced by 
candidates. Figure 4b illustrates the time consumption. GreedyP algorithm returns 

(a) (b)

Fig. 4   Number of candidates (Foursquare, 20 bitmaps)

(a) (b)

Fig. 5   Number of candidates (Gowalla, 30 bitmaps)
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the maximum number of objects and time consumption is the worst. Although the 
PINOCCHIO algorithm takes the least time, the number of objects influenced by 
candidates is also the least.

Figure 5 illustrates the results when the value of k is 10 and the number of bit-
maps is fixed at 30 in Gowalla dataset. Figure 5a displays that the number of mov-
ing objects using GreedyPS can achieve 90% compared with GreedyP algorithm. 
The PINOCCHIO algorithm only reaches half of the number of using GreedyP 
algorithm. Figure  5b shows the time consumption for the three algorithms. The 
time consumption of PINOCCHIO is the least, followed by GreedyPS, and GreedyP 
algorithms.

Figure  6 displays the comparison of the three algorithms when the number of 
objects is varied. As the number of objects in Foursquare dataset is too limited, 
hereby we only test the scalability with respect to the number of objects in Gowalla. 

(a) (b)

Fig. 6   Number of objects (Gowalla, 30 bitmaps)

(a) k = 10 (b) k = 5

Fig. 7   Number of bitmaps (Gowalla)
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In all experiments, the value of k is 10, the number of candidate locations is 600 and 
the number of bitmaps is 30. Figure 6a illustrates the number of objects influenced 
by 10 candidate locations. The number of objects influenced using the PINOC-
CHIO algorithm is only half of that of GreedyP algorithm. Compared with GreedyP 
algorithm, GreedyPS algorithm can obtain nearly 90% objects. Figure 6b shows the 
time consumption. The time consumption of PINOCCHIO is the least, followed by 
GreesyPS, and GreedyP algorithm.

Figure 7 shows the results for the scenario when the number of bitmaps changes 
in Gowalla dataset. As the number of bitmaps increases, the number of objects 
influenced by candidates and the time consumption are both increasing. Figure 7a 
shows the trend of number of objects and time consumption as the number of bit-
maps changes, when k = 10 . The GreesyP algorithm can totally return 8561 objects. 
The time consumption for GreedyP is 1228s. When the number of bitmap is one, 
the number of objects using GreedyPS is only 3,277, but the time cost is extremely 
limited, i.e., less than 1/10 that of GreedyP. If there are 40-50 bitmaps, precision 
of GreedyPS can achieve over 90% compared with GreedyP and time consumption 
is only half of the GreedyP algorithm. Figure 7b illustrates the results for the sce-
nario when k = 5 in Gowalla dataset, when the number of bitmaps increases. The 
GreedyP algorithm can totally influence 7427 objects, and the time consumption is 
1,213s. When there is only one bitmap, tprecision of GreedyPS is only 40% com-
pared with GreedyP algorithm, but the time consumption is dramatically reduced. If 
there are 40-60 bitmaps, the precision of GreedyPS can achieve about 95% and the 
time consumption is only half of the GreedyP algorithm.

Furthermore, we conduct another group of experiments to show how the effec-
tiveness and efficiency will be affected when we employ more bitmaps in GreedyPS 
algorithm. Figure 8 displays the results for the scenario when the number of bitmaps 
changes in Foursquare dataset. Figure 8a shows The GreedyP algorithm can totally 
return 2311 objects influenced by ten candidates, and the time consumption is 716s. 

(a) k = 10 (b) k = 5

Fig. 8   Number of bitmaps (Foursquare)
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When there is only one bitmap, precision of GreedyPS is only 75% compared with 
GreedyP, but time consumption is extremely low. If there are 5–10 bitmaps, preci-
sion of GreedyPS can achieve about 90% and time consumption is only one-third of 
the GreedyP algorithm. Figure  8b illustrates the GreedyP algorithm which mines 
5 candidates can totally influence 2287 objects, and the time consumption is 713s. 
When there is only one bitmap, precision of GreedyPS is only 78% compared with 
GreedyP, but the time consumption is extremely low. If there are 10-30 bitmaps, 
precision of GreedyPS can achieve about 95% and the time consumption is only half 
of the GreedyP algorithm.

6.2.2 � Experimental study on k‑additional and k‑eliminative problems

In this part, we conduct experiments to test our solutions towards two extension 
problems proposed in Sect. 5.

(a) (b)

Fig. 9   Number of � (Gowalla, bitmaps = 40)

(a) (b)

Fig. 10   Number of k (Gowalla, bitmaps = 40)
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For the k-Additional Influential Facility Placement problem, we mainly conduct 
experiments on Algorithm 3 and compare the two methods of GreedyP and Greed-
yPS algorithms on the Gowalla and Foursquare datasets, in terms of the overall 
number of influenced objects (i.e., influence by � + k ) as well as the response time.

For Gowalla dataset, Fig.  9 displays the results of the number of moving 
objects and the time consumption when k is set to 10 and the value of � varies. 
Notably, as � increases from 3 to 15 (i.e., � + k increases from 13 to 25), the over-
all number of influenced objects does not increases obviously. The reasons for 
this phenomenon are as follows. Firstly, as � increases, the marginal influence for 
k locations that are selected by GreedyP (resp., GreedyPS) eventually decreases. 
It is easy to understand, there is smaller improvement space for a bigger service 
network. Secondly, although the increase in � may enlarge the service network 
of E, the improvement exhibits a long-tail phenomenon, that is, after a certain 
threshold, further increase in the number of facilities may not improve the service 
effect significantly. Figure 10 shows the case where the value of � is fixed at 10 

(a) (b)

Fig. 11   Number of � (Foursquare, bitmaps = 30)

(a) (b)

Fig. 12   Number of k (Foursquare, bitmaps = 30)
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and k varies. The results in Figs. 9 and 10 justify that GreedyP provides higher 
results quality but requires much more running time (with more than 2 times).

For Foursquare dataset, Fig. 11 shows the results by varying � when k is fixed 
as 5. Figure 12 shows the experimental results when the value of k varies and � is 
fixed at 5. Unsurprisingly, the results in Foursquare exhibit the same phenomenon 
as that of Gowalla.

Afterwards, we conduct experiments over the k-Eliminative Influential Facility 
Placement problem, where the following three algorithms are adopted for experi-
mental comparison.

–	 GreedyE: Greedily eliminate objects from E over k iterations. During each 
iteration, it removes from E the one that influences the minimum number of 
moving objects.

–	 GreedyP: Following our approach proposed in Sect. 5.2, looking for the � − k 
locations that collectively have the maximum influence via GreedyP.

(a) (b)

Fig. 13   Number of � (Gowalla, bitmaps = 40)

(a) (b)

Fig. 14   Number of k (Gowalla, bitmaps = 40)
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–	 GreedyPS: Following our approach proposed in Sect. 5.2, looking for the � − k 
locations that collectively have the maximum influence via GreedyPS.

The results in Fig.  13 show the difference among the algorithms for Gowalla 
dataset, where � varies from 50 to 200 and the value of k is 30. It is clear that the 
numbers of moving objects that are obtained using the GreedyP and GreedyPS 
algorithms are greater than that of the GreedyE algorithm. It is consistent with our 
discussion of GreedyE approach just below Definition  9. Interestingly, similar to 
GreedyP and GreedyPS, whose complexity are directly affected by � − k (n,  k in 
Theorem 3 are replaced by �, � − k in k-Eliminative scenario, respectively), and the 
running time for GreedyE also increases as � varies from 50 to 200. The reason is 
that, as � increases, E is enlarge, the complexity for GreedyE to select the one with 
the minimum influence from E also increases.

Figure 14 shows performance of different algorithms as k changes. The num-
ber of moving objects influenced by the GreedyP algorithm is the largest. As we 
clarified in Sect. 5.2, GreedyE has the worst effectiveness with the growth of k, 

(a) (b)

Fig. 15   Number of � (Foursquare, bitmaps = 30)

(a) (b)

Fig. 16   Number of k (Foursquare, bitmaps = 30)
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which indicates that it is ineffective to remove the inferior facility in each round 
of greedy iterations. The time consumption of GreedyPS is far less than the 
other two algorithms, while the number of moving objects is very close (more 
than 90%) to that of the GreedyP algorithm.

Figure  15 reports the results of the algorithms in Foursquare. Similar to 
Fig. 13, � varies and k stays unchanged as 30. Obviously, GreedyP and Greed-
yPS can obtain significantly larger number of influenced objects, while GreedyE 
has wide gaps for all � values. On the other hand, the running time of GreedyPS 
is still the shortest, followed by GreedyE and GreedyP.

Figure 16 illustrates the number of moving objects influenced by � − k loca-
tions and the time consumption for the algorithms by varying k. The number of 
moving objects obtained by GreedyP is slightly larger than that of GreedyPS. 
GreedyE is significantly inferior to the other two algorithms, and the phenome-
non is more obvious than that in Fig. 14. The efficiency of GreedyPS is the best, 
followed by GreedyE and GreedyP.

To better understand the performance gap between the approximate solutions 
and the Optimal solutions. We extracted 200 users from the Gowalla dataset, and 
generated a small candidate dataset with a few (less than 10) candidate points. 
Through that, we are able to enumerate all possible solutions to find the optimal 
one, which we refer to as Optimal. We compare the performance gap between 
our approximate approaches and the Optimal in Figs. 17a and b.

Figure 17a shows the results when the number of moving objects � is set to 
2 and k varies from 1 to 4 for k-additional problem. We can find the Optimal 
solution has the identical result with GreedyP. Besides, GreedyPS achieves more 
than 95% accuracy comparing with the Optimal solution.

Figure 17b shows the results when � is set to 10 and the value of k varies from 
2 to 8 for k-eliminative problem. Similar with Fig. 17a, Optimal soluntion has 
the identical result with GreedyP. GreedyPS achieves more than 95% accuracy 
comparing with the Optimal solution.

(a) k-additional (b) k-eliminative

Fig. 17   Comparison with the Optimal on small dataset (bitmaps = 30)
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7 � Conclusion

In this paper, we have introduced a k-Collective Influential Facility Placement prob-
lem based on the cumulative influence probability criteria defined in [25]. We prove 
that the proposed problem is NP-hard. Due to that, we present a basic greedy algo-
rithm called GreedyP with a provable approximation bound 1 − 1

e
 . Considering the 

time cost of the algorithm may be large in huge dataset, we further present a more 
efficient algorithm, namely GreedyPS, using FM sketch to dramatically speed up the 
moving object update process of GreedyP. We also theoretically justify that, by var-
ying the number of bitmaps adopted in GreedyPS, we are able to control the tradeoff 
between efficiency and accuracy. Empirical study over two real-world datasets justi-
fies our theoretical study and demonstrates that GreedyP can achieve the best effec-
tiveness with relatively longer running time; while GreedyPS can solve the problem 
more efficiently with a satisfied accuracy. Moreover, we further present two exten-
sion problems, namely k-Additional and k-Eliminative. We theoretically show that 
k-Additional (resp., k-Eliminative) degenerates (resp., is equivalent) to k-Collective 
problem. We also theoretically discuss the hardness of both problems, and present 
solutions with guaranteed approximation ratio. As part of our future work, we shall 
explore ways to further improve the efficiency while preserving high result quality.
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