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 A B S T R A C T

Electricity theft is a widespread problem in smart grids with significant economic and security implications. Al-
though users’ electricity consumption patterns usually show obvious periodicity, they also exhibit considerable 
stochasticity and uncertainty. Existing mainstream electricity theft detection methods are the deep learning-
based ones, which struggle to capture reliable long-term dependencies from the complex consumption data, 
leading to suboptimal identification of abnormal patterns. Moreover, the massive data generated by smart 
grids demands a scalable and robust computational infrastructure that traditional systems cannot provide. 
To solve these limitations, we propose a new deep learning-based electricity theft detection framework in 
cloud computing. At the cloud server, we deploy an electricity theft detector based on the auto-correlation 
mechanism, called the ETD-SAC detector, which progressively decomposes intricate consumption patterns 
throughout the detection process and aggregates the dependencies at the subsequence level to effectively 
discover reliable long-term dependencies from users’ electricity consumption data. Experimental results show 
that the proposed ETD-SAC detector outperforms state-of-the-art detectors in terms of accuracy, false negative 
rate, and false positive rate.
1. Introduction

In modern smart grids, a combination of advanced technologies 
— including cloud computing and edge computing — is employed to 
address varying operational needs [1]. Edge computing is primarily 
designed for real-time data processing and local pre-processing because 
of its proximity to data sources and their rapid response capabilities, 
which make them ideal for immediate decision-making [2]. However, 
data analysis methods relying on complex deep learning models ne-
cessitate extensive storage and significant computational power for 
reasoning and training. These demands typically surpass the computa-
tional and storage capacities of edge devices [3]. Consequently, cloud 
computing provides a scalable and flexible infrastructure that consoli-
dates substantial storage and computational resources to process, store, 
and analyze vast amounts of real-time data [4].

Through cloud-based platforms, smart grids can integrate renewable 
energy sources, enhance demand response programs, and optimize 
energy usage. This enables utilities to better manage energy distribution 
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efficiently, monitor grid performance, and improve fault detection and 
resolution, leading to increased grid reliability and reduced operational 
costs [5]. Substantial evidences indicate that cloud computing already 
delivers significant cost-effectiveness in smart grid applications. For 
example, reports in recent years show that enterprises can reduce IT 
costs by up to 15% by moving to the cloud [6]. This shift not only 
eliminates the need for expensive servers, but also brings additional 
savings, such as an average 20% reduction in infrastructure expenses 
per year. In addition, it also reduces facility and cooling costs. [7].

Electricity theft in smart grids poses a significant challenge globally, 
with varying levels of prevalence across different countries. Electricity 
theft incurs an estimated global loss of $96 billion for governments 
and companies, with around $6 billion lost annually in the United 
States [8]. Electricity theft is usually much more severe in develop-
ing countries. For example, in India, nearly 20% of the total power 
generated is stolen by malicious users [9]. Many countries have en-
acted specific laws to combat electricity theft. For example, in South 
https://doi.org/10.1016/j.csi.2025.104007
Received 24 November 2024; Received in revised form 7 March 2025; Accepted 21
vailable online 31 March 2025 
920-5489/© 2025 Elsevier B.V. All rights are reserved, including those for text and
 March 2025

 data mining, AI training, and similar technologies. 
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Africa, the Greater Johannesburg Metropolitan Electricity By-laws out-
line penalties for stealing electricity [10]. However, despite these legal 
deterrents, electricity theft remains widespread. With methods to tam-
per with meter readings becoming more versatile, secret, and flexible, 
electricity theft tends to get even more widespread in modernized 
power systems [11]. These malicious activities result in economic 
damage and compromise the stability and reliability of electricity dis-
tribution networks, making it imperative to develop robust detection 
and prevention mechanisms [12].

Existing electricity theft detection (ETD) techniques can be broadly 
classified into measurement mismatch-based and machine learning-
based methods [11]. The fundamental principle of the measurement 
mismatch-based methods is to continuously narrow down the search 
area of malicious users until they are ultimately pinpointed [11]. This 
is primarily achieved by analyzing the readings reported by users’ 
smart meters and the measurements from advanced sensors deployed 
in the distribution network. However, the high cost of advanced sen-
sors makes it impractical for utility companies to deploy them on 
a large scale. Therefore, machine learning-based methods have be-
come mainstream detection techniques [13]. The fundamental principle 
of machine learning-based methods is identifying abnormal electric-
ity consumption patterns highly related to electricity theft, primar-
ily achieved by applying popular machine learning techniques. The 
most popular detection techniques for electricity theft are those with 
relatively short detection times and low deployment costs.

As one emerging category of machine learning technologies,
transformer-based models use various self-attention mechanisms to 
flexibly process sequence data and capture complex dependencies, and 
hence are widely applied in electricity theft detection [14]. For exam-
ple, the authors in paper [15] introduce an Anomaly Transformer (AT) 
model, which identifies malicious users by analyzing historical electric-
ity consumption data that deviates from typical consumption patterns. 
The authors in paper [16] present a Transformer Neural Network (TNN) 
model, which extracts global features from long-range load sequences 
alongside local features from segmented parts of the sequence and 
calculates the relative relationships between these features for user 
classification. However, although users’ electricity consumption pat-
terns usually show obvious periodicity, they also exhibit considerable 
stochasticity and uncertainty. The intricate temporal patterns of the 
long-term future prohibit the transformer-based detection techniques 
from finding reliable dependencies [17], adversely impacting the de-
tection techniques’ performance in terms of detection accuracy, false 
negative rate, and false positive rate.

To address the above limitations, we propose a new deep learning 
based electricity theft detection framework for smart grids in cloud 
computing, which comprises a device layer and a cloud service layer. At 
the device layer, smart meters measure users’ electricity consumption 
data, while the central observer meter measures the total supplied 
power, and then collects, processes, and transmits the consumption 
data. At the cloud service layer where the uploaded electricity con-
sumption data are stored and processed, we deploy a new deep learning 
based electricity theft detector to improve the detection performance 
of identifying malicious users. The proposed electricity theft detector 
is based on the series-wise auto-correlation mechanism, called the 
ETD-SAC detector. It decomposes electricity consumption time series 
into seasonal and trend components, calculates auto-correlations in 
the frequency domain using the fast Fourier transform (FFT) for low 
computational complexity, aggregates dependencies at the subsequence 
level, and extracts reliable long-range dependencies from users’ elec-
tricity consumption data. By harnessing the substantial storage capacity 
and powerful computational resources of cloud servers to store and 
process electricity consumption data, this proposed framework offers 
a cost-effective and efficient solution for detecting malicious users 
conducting electricity theft within smart grids. The main contributions 
of this paper are summarized as follows:
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• We propose a new deep learning based electricity theft detection 
framework for smart grids in cloud computing, which offers a 
cost-effective and efficient solution for detecting malicious users.

• We propose the ETD-SAC detector, which is based on the auto-
correlation mechanism and capable of effectively discovering re-
liable long-range dependencies within users’ electricity consump-
tion data.

• We conduct extensive experiments to evaluate the ETD-SAC de-
tector. The results show that it surpasses state-of-the-art methods 
in terms of accuracy, false negative rate, and false positive rate.

We have presented a preliminary short-version of the ETD-SAC 
detector in a conference paper [18]. The main differences between this 
paper and the conference version are as follows: Firstly, we provide 
a systematical and comprehensive literature review in Section 2. Sec-
ondly, we demonstrate the new deep learning based electricity theft 
detection framework in cloud computing in Section 3. Also, we present 
a clearer introduction of the data flow and implementation details of 
the proposed ETD-SAC detector in Section 3.3. Finally, we report the 
simulation experiment and results analysis in Section 4 and draw the 
conclusion in Section 5. 

2. Related works

In this section, we summarize the current methods for electricity 
theft detection, which, as previously mentioned, can be generally cate-
gorized into measurement mismatch-based and machine learning-based 
methods.

2.1. Measurement mismatch-based methods

As indicated in paper [11], measurement mismatch-based meth-
ods aim to identify electricity theft by analyzing discrepancies be-
tween reported electricity usage and expected values derived from 
various sensors and meters within the distribution network. These 
methods leverage advanced sensors to monitor the electricity flow 
and detect anomalies indicative of theft. They can be further cate-
gorized into sensor deployment-based, group change-based, behavior 
approximation-based, and control chart-based methods.

The core idea of sensor deployment-based methods is to find an op-
timal deployment strategy for advanced sensors, such as feeder remote 
terminal units and digital protective relays. These sensors monitor the 
electricity flow at strategic points within the distribution network. The 
goal is to maximize coverage and detection capability while minimizing 
costs. For instance, a dynamic programming algorithm can determine 
the minimum number of sensors required to effectively monitor a multi-
tenant data center, as seen in paper [19]. The main challenge with this 
approach is the high cost associated with deploying advanced sensors 
on a large scale.

The group change-based methods involve installing an inspector 
box for each community containing a head inspector and several sub-
inspectors. The head inspector detects the presence of electricity theft, 
while the sub-inspectors perform inspection steps on different groups of 
users. This approach narrows down the search area for malicious users 
through iterative inspections. A notable example is the group testing-
based heuristic inspection algorithm [20], which estimates the ratio of 
malicious users online and adapts inspection strategies accordingly. The 
objective is to identify all malicious meters with minimal inspection 
steps.

As for behavior approximation-based methods, a central observer 
meter is installed for each community to monitor electricity consump-
tion. Linear or nonlinear functions, or users’ behavior functions, are 
used to model the relationship between actual electricity consumption 
and reported readings. Tampered meters can be detected by comparing 
the modeled behavior with actual readings. An example is the use of 
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Lagrange polynomial interpolation to model an adversary’s behavior, 
allowing for the detection of discrepancies indicative of theft [21].

The control chart-based methods are designed to identify small-scale 
electricity theft where malicious users manipulate smart meter readings 
to slightly lower values. By applying cumulative sum control charts and 
Shewhart control charts together [22], these methods analyze reported 
readings and measurements from a central observer meter to detect 
anomalies. However, the method has strict assumptions about the data. 
Specifically, the data needs to satisfy the normal distribution.

To sum up, measurement mismatch-based methods encounter sev-
eral significant limitations, which can hinder their practical application. 
Firstly, they often involve high deployment costs, as implementing such 
methods can require expensive infrastructure or specialized tools. Sec-
ondly, these methods tend to have a relatively long detection time. This 
implies that they may not be able to identify issues promptly, which is a 
critical drawback in scenarios where quick detection is essential. Lastly, 
they are sometimes based on impractical assumptions, which may not 
hold in real-world environments. This can limit their effectiveness and 
reduce their applicability in diverse operational conditions.

2.2. Machine learning-based methods

As summarized in paper [11], machine learning-based methods 
have emerged as a mainstream approach for electricity theft detection 
due to their ability to model complex and non-linear relationships in the 
data. These methods focus on identifying abnormal consumption pat-
terns that indicate potential theft. Applying advanced machine learning 
techniques to analyze meter readings and other customer-related data 
offers a robust solution for detecting electricity theft.

Among these, deep learning techniques that mimic the human 
brain’s neural networks to enhance decision-making capabilities have 
led to great breakthroughs in electricity theft detection. For example, 
the authors in paper [23] explore using deep feedforward, deep re-
current, and deep convolutional-recurrent neural networks to detect 
electricity theft in distributed generation systems. The authors in pa-
per [24] introduce an ETI-CAE detector, which employs a convolutional 
autoencoder (CAE) model for electricity theft identification (ETI). The 
authors in paper [25] present a Deep Neural Network with a Particle 
Swarm Optimization (LFPR-DNN) detector, which aims to reduce false 
positive rates in electricity theft detection. However, the above meth-
ods cannot effectively capture the periodicity characteristic of users’ 
electricity consumption patterns [13], which adversely impacts the 
detection accuracy.

To better capture the periodicity characteristics, researchers trans-
form the one-dimensional (1-D) electricity consumption time series 
by week/month into a two-dimensional (2-D) matrix to emphasize 
the periodicity of consumption patterns. For example, the authors in 
paper [26] propose a novel electricity theft detection framework named 
hybrid-order representation learning network (HORLN), in which the 
sequential electricity consumption data is transformed into the ma-
trix format containing weekly consumption records. The authors in 
paper [27] propose a wide and deep convolutional neural network 
(WDCNN) detector, in which the deep component (a CNN model) is 
applied to handle matrices containing weekly electricity consumption 
data. The authors in paper [28] introduce a CNN-LSTM detector in 
which the CNNs handle monthly electricity consumption data for-
matted in matrices. However, the above method ignores the inherent 
temporal dependency in the user’s electricity consumption time series, 
adversely impacting detection accuracy.

Researchers have proposed transformer-based electricity theft de-
tection models to capture temporal dependencies better. For exam-
ple, the authors in paper [15] develop an anomaly transformer-based 
model to identify electricity theft. The authors in paper [16] propose a 
conv-attentional transformer based electricity theft detection approach. 
However, the above approaches cannot directly identify reliable long-
range dependencies from long-term electricity consumption data due to 
the complexity of consumption patterns.
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To address the above limitations, in this paper, we propose a new 
deep learning-based electricity theft detection framework for smart 
grids in cloud computing and deploy the proposed ETD-SAC detector 
based on the autocorrelation mechanism on the cloud server. The ETD-
SAC detector progressively decomposes intricate consumption patterns 
throughout the detection process and aggregates dependencies at the 
subsequence level to extract reliable long-range dependencies.

3. The proposed ETD framework

In this section, we provide a detailed explanation of the cloud 
computing-based electricity theft detection framework, in which cloud 
servers provide huge amounts of computing power and data stor-
age [29], to implement our proposed ETD-SAC detector to detect 
malicious users within the community. As shown in Fig.  1, the frame-
work primarily consists of the device and cloud service layers. The 
device layer collects, cleans, and uploads electricity consumption data 
from all users, along with the total electricity allocated to the commu-
nity. The cloud service layer stores and processes the uploaded data 
and then identifies malicious users within the community using the 
deployed electricity theft detection system. For better understanding, 
we use a workflow diagram to demonstrate the working strategy of the 
proposed electricity theft detection framework in Fig.  2. Specifically, 
the preprocessing step involves filling in missing values and replacing 
outliers at the device layer. Subsequently, the uploaded electricity 
consumption data is processed at the cloud server layer to determine 
the presence of electricity theft and identify malicious users within the 
community through the proposed ETD-SAC detector.

3.1. The device layer

The device layer consists of smart meters installed for each user and 
a tamper-proof central observer meter deployed in the community.

As shown in Fig.  1, all the smart meters are connected to the central 
observer meter via both power flow transmitted through wires and 
communication flow transmitted through the network. The smart me-
ters periodically measure the corresponding user’s electricity consump-
tion and transmit the readings to the tamper-proof central observer 
meter. The central observer meter receives all smart meters’ reported 
measurements and measures the total power distributed to all users in 
this community [13,24]. Additionally, the observer meter cleans the 
collected data by preprocessing technology and uploads them to the 
cloud server daily. Let 𝑥𝑢,𝑡 denote user 𝑢’s reported electricity consump-
tion at period 𝑡, with 𝑡 ∈ {1, 2, 3,…}. Let 𝑋𝑢 = {𝑥𝑢,1, 𝑥𝑢,2,… , 𝑥𝑢,𝑡,…}
denote the time series of user 𝑢’s reported electricity consumption. The 
preprocessing process includes filling in missing values and replacing 
outliers, as demonstrated below.

Filling in missing values: Missing values in users’ electricity con-
sumption data may result from smart meter failures, data transmission 
errors, or storage server malfunctions [30]. To address the problem, 
we apply a linear interpolation method to fill in the missing values, 
represented as NaN. Specifically, if a missing value occurs in the second 
period and its two adjacent values are available, it is replaced with the 
average of the two adjacent values; otherwise, it is updated to zero. 
Mathematically, we have 

𝑥𝑢,𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑥𝑢,𝑡, 𝑥𝑢,𝑡 = NaN
𝑥𝑢,𝑡−1+𝑥𝑢,𝑡+1

2
, 𝑥𝑢,𝑡 = NaN, 𝑥𝑢,𝑡−1, 𝑥𝑢,𝑡+1 ≠ NaN

0 otherwise.
(1)

Replacing outliers: Transmission errors of smart meters may also 
lead to outliers in users’ electricity consumption data. These outliers 
indicate significant differences between the electricity consumption 
of the current period and the adjacent periods. Such outliers will 
significantly affect the training of deep learning models. Therefore, 
we follow the work [27] to replace outliers. Specifically, let 𝑎𝑣𝑔(𝑋𝑢)
denote the mean of user 𝑢’s time series of electricity consumption data. 
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Fig. 1. The deep learning based electricity theft detection framework in cloud computing.
Fig. 2. The working strategy of the proposed electricity theft detection framework in 
cloud computing.

Let 𝑠𝑡𝑑(𝑋𝑢) denote the standard deviation of user 𝑢’s time series of 
electricity consumption data. Technically, we have 

𝑥𝑢,𝑡=

{

𝑎𝑣𝑔(𝑋𝑢)+3𝑠𝑡𝑑(𝑋𝑢), 𝑥𝑢,𝑡>𝑎𝑣𝑔(𝑋𝑢)+3𝑠𝑡𝑑(𝑋𝑢)
𝑥𝑢,𝑡, otherwise.

(2)

Let 𝑅 = {𝑟1, 𝑟2,… , 𝑟𝑡,…} denote the total electricity consumption 
measured by the central observer meter, with 𝑟𝑡 being the central 
observer meter’s reading at period 𝑡. The measurement data is also 
preprocessed in the same way and then uploaded to the cloud server.

3.2. The cloud service layer

In the cloud service layer, the cloud server mainly performs the 
following two functions: (1) determining whether there are malicious 
users in the community by comparing the central observer meter’s 
measurements and the summation of its received readings; (2) if it de-
tects the reading anomalies, i.e., the existence of malicious users, then 
it applies the trained ETD-SAC detectors to analyze users’ electricity 
consumption readings to identify malicious users, as demonstrated in 
the following:

(1) Detecting reading anomalies: As well known, technical losses 
are unavoidable during power transmission and distribution. Let 𝛿𝑢
denote the technical losses of the power transmitted from the central 
observer meter to user 𝑢. In practice, due to the complexity of the 
smart grid system, it is difficult to establish accurate mathematical 
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models [31]; therefore, existing mathematical models are usually used 
to estimate the value of 𝛿𝑢 [32]. Based on the law of conservation 
of energy, if all the users in the community honestly report their 
electricity consumptions, we have 𝑟𝑡 −

∑

𝑥𝑢,𝑡 ≅
∑

𝛿𝑢. However, if there 
are malicious users launching cyber/physical attacks to tamper with the 
smart meter measurements to smaller values, i.e., to achieve electricity 
theft purposes, then we have 𝑟𝑡 −

∑

𝑥𝑢,𝑡 ≫
∑

𝛿𝑢. In this case, the device 
layer detects reading anomalies, i.e., the existence of malicious users.

(2) Identifying malicious users: Since users’ electricity consumption 
behaviors exhibit weekly periodicity [27], in this paper, the ETD-SAC 
detectors are trained with input data containing one week of users’ 
electricity consumption data, as shown in Fig.  3. The detector first de-
composes the input data into seasonal and trend-cyclical components, 
after which the seasonal part is transformed into a high-dimensional 
feature representation. Temporal dependencies are extracted from the 
seasonal component using the auto-correlation mechanism combined 
with the trend-cyclical component. By analyzing these temporal de-
pendencies and detecting abnormal consumption patterns of malicious 
users, the detector generates a predicted label of 0/1 (indicating be-
nign/malicious status) for each day in the input data. The specifics of 
the ETD-SAC detector deployed on the cloud server are detailed in Sub- 
Section 3.3.

Additionally, the proposed ETD framework is also designed with 
scalability in mind to handle data from millions of users in real-world 
applications efficiently. Key strategies include but are not limited to 
distributed cloud architecture and batch processing techniques. The dis-
tributed cloud architecture implies that the proposed ETD framework 
employs a distributed cloud computing model, where data processing 
tasks are distributed across multiple cloud nodes to reduce compu-
tational bottlenecks and improve throughput. The batch processing 
techniques imply that electricity consumption data is processed in 
batches using parallel computing techniques to enhance efficiency.

Remark: Note that in practical applications, several measures can 
be implemented to mitigate data privacy concerns when transmitting 
sensitive user data to cloud servers. Before data transmission, identi-
fiable information like user IDs can be anonymized or replaced with 
pseudonyms to prevent data linkage to specific individuals. Security 
protocols like Transport Layer Security (TLS) can be employed to 
secure data during transmission and mitigate risks such as man-in-the-
middle attacks or data interception. For data storage, strong encryption 
algorithms like AES-256 can be utilized to guard against unauthorized 
access or insider threats. Simultaneously, strict access permission man-
agement can be enforced to ensure that only users with the necessary 
permissions can access sensitive data.

The details of the deployed ETD-SAC detector on the cloud server 
are stated as follows.
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Fig. 3. The overall framework of the proposed ETD-SAC detector.
3.3. The ETD-SAC detector

In this sub-section, we demonstrate the working strategy of the 
ETD-SAC detector, which mainly consists of four modules: series de-
composition, series embedding, feature extraction, and classifier. In the 
following, if not otherwise specified, we drop the subscript 𝑢 of 𝑥𝑢,𝑡 and 
𝑋𝑢 for notation simplicity. Since we build an ETD-SAC detector for each 
user with this user’s historical electricity consumption data, this does 
not cause any ambiguity.

3.3.1. Series decomposition
As a common technique in time series analysis, time series de-

composition can divide a time series into multiple components, each 
reflecting an underlying predictable pattern. This method is primarily 
helpful for analyzing historical changes over time. In classification 
tasks, series decomposition is often utilized as a preprocessing step 
for historical series before classification, as seen in approaches like 
Prophet [33], which uses trend-seasonality decomposition. However, 
the preprocessing method is constrained by its simplistic decomposition 
of historical series and does not capture the hierarchical interactions 
among underlying patterns in the long-term future. To address this 
problem, the ETD-SAC model incorporates the series decomposition 
layer as an internal operation module.

Let 𝐿 denote the length of the input sequence. Let 𝑑 denote the 
dimension of each element in the sequence. Let 𝑋𝑖𝑛 ∈ 𝑅𝐿×𝑑 denote the 
input of the ETD-SAC detection. We take 96 electricity consumption 
measurements daily for seven consecutive days (i.e., one week) as the 
input. We have 𝐿 = 7 and 𝑑 = 96. The series decomposition layer 
separates electricity consumption data into seasonal and trend-cyclical 
components to account for the complex characteristics of electricity 
consumption patterns. Besides, we apply an average pooling process 
with the same filling strategy to perform the sliding average [17], 
extracting the trend-cyclical component. The seasonal component is 
then obtained by subtracting the trend-cyclical component from the 
electricity consumption data. The following formula describes this 
process. 
𝑋𝑡 = AvgPool(Padding(𝑋𝑖𝑛))

𝑋𝑠 = 𝑋𝑖𝑛 −𝑋𝑡,
(3)

where 𝑋𝑠 ∈ 𝑅𝐿×𝑑 is the seasonal part obtained by decomposing the 
time series, and 𝑋𝑡 ∈ 𝑅𝐿×𝑑 is the trend-cyclical part obtained by 
decomposing the time series. Specifically, the 𝑃𝑎𝑑𝑑𝑖𝑛𝑔(⋅) adds extra 
zero elements to the edge of the input data to make the data obtained 
after subsequent pooling operations the same size as the input data. 
The 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(⋅) takes the average of all elements in the pooling window 
and replaces the elements in the window with this average value. For 
the convenience of the subsequent introduction of the implementation 
details of the ETD-SAC detector, we represent the series decomposition 
module as 𝑆𝑒𝑟𝑖𝑒𝑠𝐷𝑒𝑐𝑜𝑚𝑝(⋅).
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3.3.2. Series embedding
The high-dimensional feature representation of electricity consump-

tion data enables more effective identification of temporal dependen-
cies within complex consumption patterns. Let 𝑑𝑚𝑜𝑑𝑒𝑙 denote a user 
pre-specified target dimension to be converted. To transform the sea-
sonal component 𝑋𝑠 ∈ 𝑅𝐿×𝑑 into a specified high-dimensional space 
𝑅𝐿×𝑑𝑚𝑜𝑑𝑒𝑙 , the layer utilizes a convolutional layer for feature embedding. 
This process is expressed as 

𝑋𝑐𝑜𝑛𝑣 = 𝑊𝑐𝑜𝑛𝑣 ×𝑋𝑠 + 𝐵𝑐𝑜𝑛𝑣, (4)

where 𝑋𝑐𝑜𝑛𝑣 ∈ 𝑅𝐿×𝑑𝑚𝑜𝑑𝑒𝑙  represents the output of the convolutional 
layer, 𝑊𝑐𝑜𝑛𝑣 represents the convolution kernel, and 𝐵𝑐𝑜𝑛𝑣 is the bias 
term.

Integrating positional information with electricity consumption data 
enables more effective identification of temporal dependencies in elec-
tricity consumption patterns. The layer incorporates a positional en-
coding module described in Vaswani et al. [34] to achieve this. Let 𝑝𝑜𝑠
denote the position of an element within the input sequence 𝑋𝑖𝑛. The 
formula for generating the positional encoding is given as 

𝑃𝐸𝑝𝑜𝑠,2𝑖 = sin
(

𝑝𝑜𝑠
100002𝑖∕𝑑𝑚𝑜𝑑𝑒𝑙

)

𝑃𝐸𝑝𝑜𝑠,2𝑖+1 = cos
(

𝑝𝑜𝑠
100002𝑖∕𝑑𝑚𝑜𝑑𝑒𝑙

)

,
(5)

where 𝑝𝑜𝑠 ∈ {0, 1,… , 𝐿−1}, 𝑖 ∈ {0, 1,… , ⌊ 𝑑𝑚𝑜𝑑𝑒𝑙−1
2 ⌋} refers to the dimen-

sion index in the positional encoding. ⌊⋅⌋ represents the round down 
operation. Each dimension of the positional encoding is associated with 
a sinusoidal function, so we can obtain 𝑃𝐸𝑝𝑜𝑠 = {𝑃𝐸𝑝𝑜𝑠,0, 𝑃𝐸𝑝𝑜𝑠,1,… ,
𝑃𝐸𝑝𝑜𝑠,𝑑𝑚𝑜𝑑𝑒𝑙−1}. This function was chosen based on the hypothesis that 
it would help the model effectively learn to focus on relative positions. 
This is because, for any fixed offset 𝑘, 𝑃𝐸𝑝𝑜𝑠+𝑘 can be represented as a 
linear function of 𝑃𝐸𝑝𝑜𝑠. Let 𝑃𝐸 denote the positional encoding vector. 
Then, the position encoding vector 𝑃𝐸 can be obtained as

𝑃𝐸 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑃𝐸0
𝑃𝐸1
⋮

𝑃𝐸𝐿−1

⎞

⎟

⎟

⎟

⎟

⎠

.

Let 𝑋𝑒𝑚𝑠 ∈ 𝑅𝐿×𝑑𝑚𝑜𝑑𝑒𝑙  denote the encoding series obtained by the 
series embedding layer. The following formula obtains it: 

𝑋𝑒𝑚𝑠 = 𝑋𝑐𝑜𝑛𝑣 + 𝑃𝐸. (6)

3.3.3. Feature exaction
The feature extraction layer primarily consists of the auto-

correlation mechanism layer and the feedforward neural network layer.
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Fig. 4. The auto-correlation mechanism.

The auto-correlation mechanism layer: As illustrated in Fig.  4, the 
layer utilizes the multi-head auto-correlation mechanism to simultane-
ously focus on information from various projection spaces, extracting 
meaningful temporal dependencies from electricity consumption data.

Given time series 𝑍𝑡, based on the Wiener–Khinchin theorem [35], 
autocorrelation 𝑅𝑍𝑍 (𝜏) can be calculated by Fast Fourier Transforms 
(FFT) as 

𝑆𝑍𝑍 (𝑓 ) = 𝐹 (𝑍𝑡)𝐹 ∗(𝑍𝑡)

= ∫

∞

−∞
𝑍𝑡𝑒

−𝑖2𝜋𝑡𝑓 𝑑𝑡∫

∞

−∞
𝑍𝑡𝑒−𝑖2𝜋𝑡𝑓 𝑑𝑡

𝑅𝑍𝑍 (𝜏) = 𝐹−1(𝑆𝑍𝑍 (𝑓 )) = ∫

∞

−∞
𝑆𝑍𝑍 (𝑓 )𝑒𝑖2𝜋𝑓𝜏 𝑑𝑓 ,

(7)

where 𝜏 ∈ {1, 2,… , 𝐿}, 𝐹  represents the FFT and 𝐹−1 represents its 
inverse. The operator ∗ denotes the conjugate operation, and 𝑆𝑍𝑍 (𝑓 )
is in the frequency domain. Note that the series autocorrelation of all 
lags in {1, 2,… , 𝐿} can be computed at once using FFT. Therefore, the 
autocorrelation has a computational complexity of 𝑂(𝐿 log(𝐿)).

The auto-correlation mechanism layer first employs ℎ different lin-
ear projections to map the input data 𝑋𝑒𝑚𝑠 to three series query 𝑄𝑖, key 
𝐾𝑖 and value 𝑉𝑖, 𝑖 ∈ {1, 2,… , ℎ}, 𝑄𝑖, 𝐾𝑖, 𝑉𝑖 ∈ 𝑅𝐿× 𝑑𝑚𝑜𝑑𝑒𝑙

ℎ . For each set of 
(𝑄𝑖, 𝐾𝑖, 𝑉𝑖), the layer then calculates autocorrelation 𝑅𝑄𝑖𝐾𝑖

(𝜏) between 
series 𝑄𝑖 and 𝐾𝑖, and selects the top 𝑘 positions with the highest 
autocorrelation as the time delay starting point. Then, as shown in Eq. 
(8), we normalize the top 𝑘 autocorrelation. At these top 𝑘 starting 
points, a time delay operation is performed on 𝑉𝑖 to generate a new time 
delay series. Subsequently, the autocorrelations and the time-delayed 
series are weighted and summed up to produce the output series 𝐻𝑖
of a single auto-correlation mechanism. Finally, the layer concatenates 
the 𝐻𝑖 and performs another linear projection to obtain the final result. 
Specifically, the auto-correlation mechanism is described as 

𝜏1,… , 𝜏𝑘 = 𝑎𝑟𝑔 𝑇 𝑜𝑝𝑘
𝜏 ∈ {1,… , 𝐿}

(𝑅𝑄𝑖𝐾𝑖
(𝜏𝑘))

�̂�𝑄𝑖𝐾𝑖
(𝜏𝑗 ) =

𝑒𝑅𝑄𝑖𝐾𝑖 (𝜏𝑗 )

∑𝑘
𝑗=1 𝑒

𝑅𝑄𝑖𝐾𝑖 (𝜏𝑗 )

𝐻𝑖 =
𝑘
∑

𝑗=1
Roll(𝑉𝑖, 𝜏𝑗 )�̂�𝑄𝑖𝐾𝑖

(𝜏𝑗 )

𝑋𝑎𝑢𝑡𝑜 = 𝑊𝑚𝑢𝑡𝑖 × Concat(𝐻1,… ,𝐻ℎ),

(8)

where 𝑎𝑟𝑔𝑇 𝑜𝑝𝑘(⋅) is to get the arguments of the top 𝑘 autocorrelations 
and set 𝑘 = ⌊𝑐 ⋅ log(𝐿)⌋, 𝑐 is a hyper-parameter; 𝑅𝑜𝑙𝑙(𝑉 , 𝜏) represents 
the operation to 𝑉  with time delay 𝜏, during which elements that are 
shifted beyond the first position are reintroduced at the last position. 
𝑊𝑚𝑢𝑡𝑖 represents the parameter matrix. Concat(⋅) represents the con-
catenation operation of vectors. 𝑋𝑎𝑢𝑡𝑜 ∈ 𝑅𝐿×𝑑𝑚𝑜𝑑𝑒𝑙  is the output of the 
auto-correlation attention mechanism layer.

Then, we apply the series decomposition module to decompose 
further the complex consumption patterns, which can be expressed as 
follows: 
𝑋𝑠,𝑎𝑢𝑡𝑜, 𝑋𝑡,𝑎𝑢𝑡𝑜 = 𝑆𝑒𝑟𝑖𝑒𝑠𝐷𝑒𝑐𝑜𝑚𝑝(𝑋𝑎𝑢𝑡𝑜 +𝑋𝑒𝑚𝑠), (9)

where 𝑋𝑠,𝑎𝑢𝑡𝑜 ∈ 𝑅𝐿×𝑑𝑚𝑜𝑑𝑒𝑙  is the seasonal part, and 𝑋𝑡,𝑎𝑢𝑡𝑜 ∈ 𝑅𝐿×𝑑𝑚𝑜𝑑𝑒𝑙  is 
the trend-cyclical part.
6 
To better capture the long-term temporal dependencies of the user’s 
electricity consumption time series, we sequentially connect 𝑛 auto-
correlation mechanism layers in the feature extraction module.

The feedforward neural network layer: The feedforward neural 
network leverages nonlinear activation functions to learn intricate 
consumption patterns, allowing it to extract temporal dependencies 
from electricity consumption data effectively. Then this process can be 
expressed as follows: 
𝑋𝑓𝑒𝑒𝑑 = 𝑚𝑎𝑥(0, 𝑋𝑠,𝑎𝑢𝑡𝑜×𝑊1,𝑓𝑒𝑒𝑑+𝑏1,𝑓𝑒𝑒𝑑 )×𝑊2,𝑓𝑒𝑒𝑑+𝑏2,𝑓𝑒𝑒𝑑 (10)

where 𝑊1,𝑓𝑒𝑒𝑑 , 𝑊2,𝑓𝑒𝑒𝑑 are the parameter matrices. 𝑏1,𝑓𝑒𝑒𝑑 , 𝑏2,𝑓𝑒𝑒𝑑 are 
the bias terms. 𝑚𝑎𝑥(0, 𝑚) means taking the larger value of 0 and 𝑚. 
𝑋𝑓𝑒𝑒𝑑 ∈ 𝑅𝐿×𝑑𝑚𝑜𝑑𝑒𝑙  is the output of the feedforward neural network layer.

Then, we also apply the series decomposition module to decompose 
the complex consumption patterns, which can be expressed as follows: 

𝑋𝑠,𝑓𝑒𝑒𝑑 , 𝑋𝑡,𝑓𝑒𝑒𝑑 = 𝑆𝑒𝑟𝑖𝑒𝑠𝐷𝑒𝑐𝑜𝑚𝑝(𝑋𝑓𝑒𝑒𝑑 +𝑋𝑠,𝑎𝑢𝑡𝑜), (11)

where 𝑋𝑠,𝑓𝑒𝑒𝑑 ∈ 𝑅𝐿×𝑑𝑚𝑜𝑑𝑒𝑙  is the seasonal part, and 𝑋𝑡,𝑓𝑒𝑒𝑑 ∈ 𝑅𝐿×𝑑𝑚𝑜𝑑𝑒𝑙  is 
the trend-cyclical part.

Finally, we superimposes the seasonal part with the cumulative 
trend-cyclical part as the output of the feature extraction module, 
which can be expressed as follows: 
𝑋𝑜𝑢𝑡 = 𝑊𝑠×𝑋𝑠,𝑓𝑒𝑒𝑑+𝑊𝑡,𝑓𝑒𝑒𝑑×𝑋𝑡,𝑓𝑒𝑒𝑑+𝑊𝑡,𝑎𝑢𝑡𝑜×𝑋𝑡,𝑎𝑢𝑡𝑜+𝑋𝑡 (12)

where 𝑊𝑠 is the parameter matrix to project the deep transformed 
seasonal part to the original dimension. 𝑊𝑡,𝑓𝑒𝑒𝑑 and 𝑊𝑡,𝑎𝑢𝑡𝑜 are param-
eter matrices to project the deep transformed trend-cyclical part to the 
original dimension. 𝑋𝑜𝑢𝑡 ∈ 𝑅𝐿×𝑑 is the output of the feature extraction 
module.

3.3.4. Classifier
The classifier consists of two consecutive convolutional layers de-

signed to analyze temporal dependencies and detect abnormal con-
sumption patterns. The classification outcomes are passed through an 
activation function to produce the output 𝑌𝑜𝑢𝑡 ∈ 𝑅𝐿×1 with values 
between 0 and 1, which can be expressed as follows: 
𝑌𝑜𝑢𝑡 = 𝜎(𝑊2,𝑐𝑙𝑎𝑠𝑠 × (𝑊1,𝑐𝑙𝑎𝑠𝑠 ×𝑋𝑜𝑢𝑡 + 𝑏1,𝑐𝑙𝑎𝑠𝑠) + 𝑏2,𝑐𝑙𝑎𝑠𝑠), (13)

where 𝑊1,𝑐𝑙𝑎𝑠𝑠, 𝑊2,𝑐𝑙𝑎𝑠𝑠 are the parameter matrices. 𝑏1,𝑐𝑙𝑎𝑠𝑠, 𝑏2,𝑐𝑙𝑎𝑠𝑠 are 
the bias terms. 𝜎(𝑧) = 1

1+𝑒−𝑧  is the activation function.
Each value in 𝑌𝑜𝑢𝑡 is then compared to a predefined electricity 

consumption abnormality threshold, typically set at 0.5. If a value 
exceeds the threshold, the corresponding detection sample is classified 
as an electricity theft case; otherwise, it is considered benign.

4. Experiments

4.1. Experiment settings

In this paper, we conduct an extensive evaluation of the deployed 
ETD-SAC detector using the real-world consumption dataset [36], 
which includes the electricity consumption data of 370 residential and 
industrial users from 2011 to 2014, with a sampling interval of 15 min. 
The dataset used for model training and testing spans 1096 days, from 
2012 to 2014. We exclude user data with more than 20% missing 
values, leaving the historical electricity consumption data of 321 users. 
Since all the data in the dataset comes from honest users [36], we 
simulate malicious user behavior by introducing attacks to manipulate 
the electricity consumption data.

We split the user’s electricity consumption time series into equally 
sized benign detection samples. Each sample contains 96 data, corre-
sponding to one day’s electricity consumption. Half of the benign and 
malicious samples are tampered with to ensure the balance of benign 
and malicious samples. Let 𝑡  and 𝑡  denote a detection sample’s 
𝑏𝑒𝑔 𝑒𝑛𝑑
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Fig. 5. Simulation results regarding how parameter 𝑙𝑎𝑦𝑒𝑟 affects the performance of the ETD-SAC detector, evaluated by: (a) ACC; (b) FNR; (c) FPR.
start and end measurement periods, respectively. By analyzing the 
behavior patterns of malicious users, we consider the following three 
types of attacks: (1) Attack 1: 𝑥′𝑢,𝑡 = 𝛼𝑡𝑥𝑢,𝑡, ∀𝑡 ∈ {𝑡𝑏𝑒𝑔 , 𝑡𝑏𝑒𝑔+1,… , 𝑡𝑒𝑛𝑑}, 
where 𝑥′𝑢,𝑡 denotes the 𝑡th generated electricity consumption of ma-
licious users. By Attack 1, malicious users tamper with electricity 
consumption by a constantly changed coefficient 𝛼𝑡. (2) Attack 2: 
𝑥′𝑢,𝑡 = 𝛽𝑥𝑢,𝑡, 𝑡 ∈ {𝑡𝑏𝑒𝑔 , 𝑡𝑏𝑒𝑔+1,… , 𝑡𝑒𝑛𝑑}, by which malicious users tamper 
with electricity consumption by a constant coefficient 𝛽. (3) Attack 
3: 𝑥′𝑢,𝑡 =

{

𝑥𝑢,𝑡,∀𝑡 ∈ {𝑡𝑏𝑒𝑔 , 𝑡𝑏𝑒𝑔 + 1,… , 𝑡𝑠𝑡𝑒},
𝛼𝑡𝑥𝑢,𝑡,∀𝑡 ∈ {𝑡𝑠𝑡𝑒 + 1, 𝑡𝑠𝑡𝑒 + 2,… , 𝑡𝑒𝑛𝑑}

, by which malicious 
users launch Attack 1 from some measurement periods indexed by 𝑡𝑠𝑡𝑒
between 𝑡𝑏𝑒𝑔 and 𝑡𝑒𝑛𝑑 .

We split each user’s detection samples into training, verification, 
and test sets at a ratio of 7:1:2. As mentioned before, we train an 
ETD-SAC detector for each user in the community and deploy them in 
the cloud server. These deployed ETD-SAC detectors are implemented 
in Pytorch. We set the batch size to 32 and used the binary cross-
entropy loss for model training. The Adam optimizer is applied to 
update the model parameters with an initial learning rate of 10−4, 
which decreases with the number of iterations. We add the dropout 
layer with a probability of 0.5 to prevent the model from overfit-
ting. Additionally, we incorporate an early stopping mechanism, where 
training halts if the verification set loss does not decrease for three 
consecutive iterations. A total of 10 training iterations were conducted, 
with each experiment repeated three times. Let TP, TN, FP, and FN 
denote true positive, true negative, false positive, and false negative in 
the confusion matrix, respectively. We use the following three metrics 
to evaluate the performance of electricity theft detection: (1) Accuracy 
(ACC): the ratio of the number of correct predicted samples to the 
number of all samples, with 𝐴𝐶𝐶 = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 . (2) False negative 
rate (FNR): the ratio of the number of malicious samples mistakenly 
predicted as honest samples to the total number of malicious samples, 
with 𝐹𝑁𝑅 = 𝐹𝑁

𝑇𝑃+𝐹𝑁 . (3) False positive rate (FPR): the ratio of honest 
samples mistakenly predicted as malicious to the total number of honest 
samples, with 𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑁 .

4.2. Parameter analysis

In this sub-section, we investigate the impact of parameters on 
the performance of the ETD-SAC detector. We conduct comparative 
experiments with various parameter values under Attacks 1, 2, and 3 
to achieve optimal performance. The specific parameters for the attack 
models are as follows: We set 𝛼𝑡 to range from 0.6 to 0.7 under Attack 
1; We set 𝛽 = 0.6 under Attack 2; Let 𝛾 denote the ratio of electricity 
theft periods to the total measurement periods; We set 𝛼𝑡 ∈ (0.1, 0.9)
and 𝛾 = 0.4 under Attack 3.

(1) Experiment 1: To investigate the impact of the number 𝑛 of 
auto-correlation mechanism layers on the performance of the ETD-SAC 
detector, we conduct comparative experiments by setting the values 
of 𝑛 to 1, 2, 3, and 4, respectively, with 𝑐 = 2, 𝑑𝑚𝑜𝑑𝑒𝑙 = 1024, and 
ℎ = 8 under all attack models. The experimental results are shown 
in Fig.  5. When we set the value of 𝑛 to 1 or 2 instead of 3 or 4, 
the detector performs better with higher ACC, lower FNR, and FPR 
7 
under all attack models. Compared to when the value of 𝑛 is set to 1, 
setting the value of 𝑛 to 2 degrades the detection performance under 
Attacks 1 and 3 but significantly improves performance under Attack 
2. Setting the value of 𝑛 to 2 yields optimal comprehensive detection 
performance.  As the value of 𝑛 increases, the receptive field of the 
detector enlarges, allowing it to better capture long-range dependencies 
in electricity consumption data. However, the experimental results 
show that when the value of 𝑛 is large, the model exhibits increased 
complexity, potentially resulting in redundant or noisy feature ex-
traction and overfitting. Conversely, if the value of 𝑛 is too small, 
the effective receptive field becomes inadequate for capturing critical 
long-term dependencies. Therefore, in this study, we set 𝑛 = 2.

(2) Experiment 2: To investigate the impact of the hyperparameter 𝑐
for obtaining top 𝑘 on the performance of the ETD-SAC detector, where 
𝑘 = [𝑐×log𝐿] indicates the number of delay sequences 𝑋𝑡−𝜏 , we conduct 
comparative experiments by setting the values of 𝑐 to 1, 2, 3, and 4, re-
spectively, with 𝑛 = 2, 𝑑𝑚𝑜𝑑𝑒𝑙 = 1024, and ℎ = 8 under all attack models. 
The experimental results are shown in Fig.  6. With changes in the value 
of 𝑐, the detector’s ACC, FNR, and FPR show no significant changes 
under all attack models, and the performance remains stable.  Although 
increasing the value of 𝑐 increases the number of delay sequences 𝑘, 
the additional information gained tends to saturate due to the small 𝐿
of the input data. If the essential long-term dependencies are already 
captured with approximately ⌊𝑐× 𝑙𝑜𝑔𝐿⌋ sequences, then setting a larger 
value of 𝑐 will not lead to substantial performance improvements but 
will result in higher computational cost and complexity. Therefore, in 
this study, we set 𝑐 = 2.

(3) Experiment 3: To investigate the impact of the output dimension 
𝑑𝑚𝑜𝑑𝑒𝑙 of the embedding layer used for seasonal features in the series 
embedding module on the performance of the ETD-SAC detector, we 
conduct comparative experiments by setting the values of 𝑑𝑚𝑜𝑑𝑒𝑙 to 128, 
256, 512, and 1024, respectively, with 𝑛 = 2, 𝑐 = 2, and ℎ = 8 under all 
attack models. The experimental results are shown in Fig.  7. With the 
increase in the value of 𝑑𝑚𝑜𝑑𝑒𝑙, the ACC of the detector shows an upward 
trend, while FNR and FPR show a downward trend under all attack 
models, and the performance gradually improves. When the value of 
𝑑𝑚𝑜𝑑𝑒𝑙 is set to 1024, the detection performance slightly decreases under 
Attack 3.  A higher embedding dimension allows the model to capture 
more nuanced and fine-grained seasonal patterns, enhancing its ability 
to learn the complex dependencies in electricity consumption data. 
However, according to the principle of diminishing returns, increasing 
the value of 𝑑𝑚𝑜𝑑𝑒𝑙 beyond a certain point introduces redundancy and 
even leads to overfitting, as the model starts to learn noise rather than 
meaningful patterns. Moreover, higher dimensions inherently increase 
computational cost and model complexity. Therefore, in this study, we 
set 𝑑𝑚𝑜𝑑𝑒𝑙 = 1024.

(4) Experiment 4: To investigate the impact of the dimension ℎ𝑒𝑎𝑑
of the linear projection in the multi-head auto-correlation mechanism 
on the performance of the ETD-SAC detector, we conduct comparative 
experiments by setting the values of ℎ to 4, 8, 16, and 32, respectively, 
with 𝑛 = 2, 𝑐 = 2, and 𝑑𝑚𝑜𝑑𝑒𝑙 = 1024 under all attack models. The 
experimental results are shown in Fig.  8. With changes in the value of 
ℎ, the detector’s ACC, FNR, and FPR show no significant changes under 
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Fig. 6. Simulation results regarding how parameter 𝑐 affects the performance of the ETD-SAC detector, evaluated by: (a) ACC; (b) FNR; (c) FPR.
Fig. 7. Simulation results regarding how parameter 𝑑𝑚𝑜𝑑𝑒𝑙 affects the performance of the ETD-SAC detector, evaluated by: (a) ACC; (b) FNR; (c) FPR.
Fig. 8. Simulation results regarding how parameter ℎ affects the performance of the ETD-SAC detector, evaluated by: (a) ACC; (b) FNR; (c) FPR.
Attack 3, and the performance remains stable. When we set the value 
of ℎ to 4 or 8 instead of 16 or 32, the detector performs better with 
higher ACC, lower FNR, and FPR under Attack 1 and 2. Compared to 
when the value of ℎ is set to 4, setting the value of ℎ to 8 improves the 
detection performance under Attack 1 and 2. Setting the value of ℎ to 
8 yields optimal comprehensive detection performance.  The value of 
ℎ determines the number of parallel projection heads, indicating that 
the total embedding dimension 𝑑𝑚𝑜𝑑𝑒𝑙 is divided among ℎ heads. With 
𝑑𝑚𝑜𝑑𝑒𝑙 = 1024, setting ℎ = 8 results in an allocation of 128 dimensions 
per head. This allocation is widely regarded as optimal for balancing 
the expressiveness and diversity of feature representations. A smaller 
value of ℎ increases the dimensionality of each head, which may 
result in less specialized subspaces and a diminished ability to capture 
distinct features. Conversely, a larger value of ℎ reduces the per-head 
dimensionality to 64 or 32, respectively, potentially constraining the 
ability of each head to learn meaningful patterns and substantially 
increasing the total parameter count, thereby heightening the risk of 
overfitting. Therefore, in this study, we set ℎ = 8.

(5) Experiment 5: We replace the auto-correlation mechanism mod-
ule in the ETD-SAC detector with the self-attention mechanism and 
conduct comparative experiments under all attack models. Following 
the parameter analysis, we set the parameter values of the ETD-SAC 
detector as follows: 𝑛 = 2, 𝑐 = 2, 𝑑𝑚𝑜𝑑𝑒𝑙 = 1024, and ℎ = 8. The experi-
mental results are shown in Fig.  9. Compared with the detector based 
on the self-attention mechanism, using the auto-correlation mecha-
nism significantly improved ACC. It reduced FNR and FPR, verifying 
the effectiveness of series-wise connections compared to point-wise 
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self-attention. The FNR of the detector based on the self-attention 
mechanism is substantially higher than the FPR. It tends to misclassify 
malicious users as benign users, whereas the detector based on the auto-
correlation mechanism distinguishes malicious users from benign users 
more effectively.

4.3. The ETD-SAC detector v.s. other detectors

In this section, we verify the effectiveness of the ETD-SAC detector 
by conducting various experiments under all attack models and com-
paring its performance with the following five baseline detectors: (1) 
the WDCNN detector [27], (2) the CNN-LSTM detector [28], (3) the 
LFPR-DNN detector [25], and (4) the HORLN detector [26]. We set 
the parameter values of the baseline detectors according to the values 
reported in the original studies. Following the parameter analysis, we 
set the parameter values of the ETD-SAC detector as follows: 𝑛 = 2, 
𝑐 = 2, 𝑑𝑚𝑜𝑑𝑒𝑙 = 1024, and ℎ = 8.

(1) Experiment 1: We assume that malicious users launch Attack 1. 
Specifically, we consider the following scenarios to compare electricity 
theft detection performance: (1) Case I: 𝛼𝑡 ∈ (0.6, 0.7); (2) Case II: 𝛼𝑡 ∈
(0.7, 0.8); (3) Case III: 𝛼𝑡 ∈ (0.8, 0.9). The experimental results are shown 
in Fig.  10. As 𝛼𝑡 increases, the ACC of all detectors exhibits a decreasing 
trend, while the FNR and FPR exhibit an increasing trend. As common 
knowledge, the smaller the electricity malicious users steal, the more 
difficult it is to detect their theft behavior. Compared to baseline de-
tectors, the ETD-SAC detector achieves the highest ACC and the lowest 
FNR in all scenarios. In Cases I and II, compared to the HORLN detector, 
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Fig. 9. Comparing the auto-correlation mechanism with the self-attention mechanism in the ETD-SAC detector, evaluated by: (a) ACC; (b) FNR; (c) FPR.
Fig. 10. Comparing the proposed ETD-SAC detector with state-of-the-art detectors under Attack 1, evaluated by: (a) ACC; (b) FNR; (c) FPR.
Fig. 11. Comparing the proposed ETD-SAC detector with state-of-the-art detectors under Attack 2, evaluated by: (a) ACC; (b) FNR; (c) FPR.
the ETD-SAC detector exhibits a significantly lower FNR and a slightly 
higher FPR. The HORLN detector tends to misclassify malicious users 
as benign users, whereas the ETD-SAC detector distinguishes malicious 
users from benign users more effectively.

(2) Experiment 2: We assume that malicious users launch Attack 2. 
We set the value of 𝛽 to range from 0.6 to 0.9 with an interval of 0.05 
to compare electricity theft detection performance. The experimental 
results are shown in Fig.  11. As 𝛽 increases, the amount of electricity 
stolen by malicious users decreases. Consequently, the ACC of all 
detectors shows a decreasing trend, while the FNR and FPR show an 
increasing trend. Compared to the baseline detectors, except for the 
HORLN detector, the ETD-SAC achieves the highest ACC and the lowest 
FNR and FPR in all scenarios. When 𝛽 is less than 0.7, the ACC of the 
ETD-SAC detector and the HORLN detector are not much different, and 
their detection performance is comparable. When 𝛽 is greater than or 
equal to 0.7, the ACC of the ETD-SAC detector is significantly higher 
than that of the HORLN detector. When malicious users steal a small 
amount of electricity, the ETD-SAC detector demonstrates excellent 
detection performance.
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(3) Experiment 3: We assume that malicious users launch Attack 
3. We set the value of 𝛾 to range from 0.1 to 0.4, with an interval 
of 0.05, to compare electricity theft detection performance. The ex-
perimental results are shown in Fig.  12. As 𝛾 increases, the ACC of 
all detectors shows an increasing trend, while the FNR and FPR show 
a decreasing trend. As common knowledge, the shorter the time for 
malicious users to steal electricity, the more difficult it is to detect their 
theft behavior. When 𝛾 is less than 0.2, malicious users steal electricity 
for a short period, significantly reducing the detection performance, 
especially the WDCNN detector, which struggles to identify short-term 
electricity theft behavior from long-term electricity consumption data. 
The CNN-LSTM detector achieves the highest ACC and the lowest FNR 
and FPR, which first employs the CNN network for local perception, 
effectively capturing local anomaly features in electricity consumption 
data. When 𝛾 is greater than or equal to 0.2, the ACC, FNR, and FPR of 
the ETD-SAC and CNN-LSTM detectors differ slightly, and their detec-
tion performance is comparable. When malicious users steal electricity 
for an extended period, the ETD-SAC detector demonstrates excellent 
detection performance.



Z. Si et al. Computer Standards & Interfaces 94 (2025) 104007 
Fig. 12. Comparing the proposed ETD-SAC detector with state-of-the-art detectors under Attack 3, evaluated by: (a) ACC; (b) FNR; (c) FPR.
5. Conclusion

In this paper, we propose a new deep learning-based electricity 
theft detection framework in the context of cloud computing to identify 
malicious users in smart grids. The deployed ETD-SAC detector on 
the cloud server progressively decomposes consumption patterns to 
highlight the inherent properties of electricity consumption time series 
and aggregates the dependencies representation at the subsequence 
level based on the series periodicity. In this way, the detector effec-
tively extracts reliable long-range dependencies to identify abnormal 
consumption patterns and detect electricity theft behaviors. We have 
conducted extensive experiments to evaluate the performance of the 
ETD-SAC detector, and the results show that the approach has excellent 
performance in terms of accuracy, false negative rate, and false positive 
rate. In addition, the cloud server provides a substantial storage capac-
ity and robust computing power, which allows us to economically and 
efficiently identify electricity theft users.
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