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ABSTRACT
Facility Relocation (FR), which is an effort to reallocate the place-

ment of facilities to adapt to the changes of urban planning and

population distribution, has remarkable impact on many applica-

tion areas. Existing solutions to the FR problem either focus on

relocating one facility (i.e., 1-FR) or fail to guarantee the result

quality on relocating 𝑘 > 1 facilities (i.e., 𝑘-FR). As 𝑘-FR problem is

NP-hard and is not submodular or non-decreasing, traditional hill-

climb approximate algorithm cannot be directly applied. In light of

that, we propose to transform 𝑘-FR into another facility placement

problem, which is submodular and non-decreasing.We theoretically

prove that the optimal solution of both problems are equivalent.

Accordingly, we are able to present the first approximate solution to-

wards the 𝑘-FR, namely FR2FP. Our extensive comparison over both

FR2FP and the state-of-the-art heuristic solution shows that FR2FP,

although provides approximation guarantee, cannot necessarily

given superior results to the heuristic solution. The comparison

motivates and, more importantly, directs us to present an advanced

approximate solution, namely FR2FP-ex. Extensive experimental

study over both real-world and synthetic datasets have verified

that, FR2FP-ex demonstrates the best result quality. In addition, we

also exactly unveil the scenarios when the state-of-the-art heuristic

would fail to provide satisfied results in practice.

CCS CONCEPTS
• Theory of computation → Facility location and clustering;
Approximation algorithms analysis; • Information systems →
Wrappers (data mining).
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1 INTRODUCTION
The facility relocation (FR) problem aims to reallocate facilities

in light of changes in users’ locations. This can improve service

quality and is useful in many applications. For example, when a

new subway line is launched, many people may resettle to different

locations. As a result, facilities (e.g., chain store, firehouse, etc.) may

need to be reallocated.

Several studies [7, 11, 18, 19, 23] have been undertaken to solve

the FR problem under the Min-dist criteria with a variety of con-

straints. Specifically, given a set of users𝑈 , existing facility loca-

tions 𝐹 , a set of new locations𝐶 , assume that each user is associated

with a nearest facility in 𝐹 , it is rational to expect that the distance

between each user and her nearest facility is minimized. Driven by

that, FR [18] aims to relocate 𝑘 arbitrary facilities 𝑓 ∈ 𝐹 with new

locations 𝑐 ∈ 𝐶 in order that the average distance between all users

and their nearest facilities is minimized.

Most of the existing solutions to the FR problem only consider

the situation where we only relocate one facility [18, 21], i.e., 𝑘 =

1. However, in practice, the k should not be limited in order to

minimize the service distance. For instance, consider population

changes in 254 counties in Texas. During the period from 2010 to

2021
1
, there are 38 counties with a population change rate greater

than 20% (including both increase and decrease). Among them, 19

counties have a change rate over 30%. Suppose there is a chain

store (e.g., McDonald’s) which deployed facilities according to the

population distribution in 2010. By 2021, due to the change in

population distribution, it will definitely be unable to provide the

best service and thus fail to obtain the maximum benefits especially

when their competitors have improved the service by relocating

facilities. Therefore, there exist enough motivation for the store

to relocate a series of the existing facilities to improve the service

network (i.e., to minimize the service distance).

Notably, given the existing solutions towards FR problem with

𝑘 = 1, referred to as 1-FR, extensively addressing the problem with

1
https://worldpopulationreview.com/us-counties/states/tx
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𝑘 > 1, referred to as 𝑘-FR, is not a trivial task due to the following

challenges. Firstly, the solution space changes from |𝐹 | × |𝐶 | to
𝑘∑
𝑖=1

( 𝑖
|𝐹 |
)
×
( 𝑖
|𝐶 |

)
, which is not polynomial. Note that the solution

space does not necessarily become

( 𝑘
|𝐹 |
)
×
( 𝑘
|𝐶 |

)
, but is eventually

much larger. The reason is, although we hope to relocate 𝑘 facilities,

the average distance of users may be already minimized when

𝑘 ′(𝑘 ′ < 𝑘) facilities are replaced. Obviously, the 𝑘-FR problem can

degenerate to the well-known 𝑘-median problem [6] when we set

𝐹 = ∅. Therefore, the 𝑘-FR problem is at least as hard as the 𝑘-

median problem, which is NP-hard [8]. Secondly, as we shall show

in Section 5, 𝑘-FR is not submodular or non-decreasing, such that

greedy approximate strategy cannot be directly applied. Although

there exist heuristic solution [21] towards the 𝑘-FR problem. They

can not provide approximate ratio over the results, such that the

efficacy of the solutions are not reliable.

In addition to the hardness of the 𝑘-FR problem, we advocate

that the users considered in FR problem should not be necessarily

static, but allowed to be dynamic. That is, when considering the

service distance from a facility towards a user, the user cannot be

simply modeled as a static position, but a series of positions along

her movement track. Similar problem statement can also be found

in a series of related works [3, 21].

In order to address the limitations above, in this paper, we pro-

pose to transform 𝑘-FR into a facility placement problem [4, 9, 20],

which is submodular and non-decreasing, and prove that the trans-

formed problem is equivalent to the 𝑘-FR. By converting the 𝑘-FR

problem into the facility placement problem, we proposed the first

approximate solution towards the 𝑘-FR problem, the results of

which can provide an approximation guarantee to the optimal ones.

By comparing with the state-of-the-art heuristic solution [21], we

observe that the practical efficacy of the basic approximate algo-

rithm is not superior to the heuristic one. In fact, as 𝑘 is small, the

result quality of the basic solution is poor than that of [21]. We ex-

plained the reason for this phenomenon and accordingly, proposed

an advanced approximate solution, called FR2FP-ex, which can ob-

tain the best performance over the competitors while ensuring the

same approximation ratio.

In summary, the major contributions of this paper are as follows:

• As the 𝑘-FR problem does not satisfy submodularity or non-

decreasing, it cannot be directly approximately addressed by

hill-climb solutions. In light of that, we propose to equiva-

lently transform the 𝑘-FR in to a facility placement problem,

where we propose an approximate solution. To the best of

our knowledge, it is the first approximate solution towards

the 𝑘-FR problem.

• We observe that, although the approximate solution provides

result guarantee, it does not necessarily provide better results

practically, sometimes worse. Our thorough investigation,

both theoretical and empirical, unveils the secret behind the

unexpected performance of the existing heuristic solution.

• Given our insight in the performance comparison between

the basic approximate solution and state-of-the-art heuristic

one, we propose an advanced approximate solution, which

demonstrate superior performance compared to the state-of-

the-art heuristic and ensures the approximation ratio in the

quality of the result.

The rest of this paper is organized as follows. We introduce the

related work In Section 2. In Section 3, we discuss how to model

the movements of users. Section 4 formally gives the definition

of the 𝑘-FR problem. In Section 5, two methods are proposed to

solve 𝑘-FR problem with approximation rate. Section 6 presents our

experiments and results. In Section 7, we extensively discuss the

scenarios where the state-of-the-art heuristic will fail in practice.

In Section 8 we conclude this article.

2 RELATEDWORK
Min-dist in Euclidean. [14] studied the 𝑘-medios problem based

on the minimum distance. The goal is to select 𝑘 center points

from all points so that the summed distance between all other

points and the nearest 𝑘 centers is the smallest. [29] studied another

problem, by assuming that there are already some facilities and

users, find a location in a given area to establish a new facility to

minimize the average distance from the user to the nearest facility.

The author proposed a progressive algorithm that can gradually

obtain the optimal solution. [17] studied a discrete form of the

above problem. The possible location facilities are no longer the

entire continuous space, but a set of discrete locations specified

in advance. Their goal is to find a location from these locations to

build a new facility which minimizes the average distance between

users and the nearest facility. The above researches are all based

on Euclidean space, which is different from the issue we consider

on the road network.

Min-dist on the road. [25] studied the optimal location prob-

lem on the road network. They proposed a framework based on

the divide-and-conquer strategy to place multiple facilities at the

same time. The problem studied by [2] is the same as that of [25].

Based on the idea of nearest local network [5], they proposed an

efficient algorithm to solve the problem. As discussed in [18], in

real applications, we are always allowed to choose from some can-

didate locations. Hence the answers generated by these approaches

may not eventually be valid in practice. [16] finds a facility among

existing ones that has the minimum average distance to all the

users, w.r.t. Euclidean distance, while [28] solved the problem on

road network utilizing network connectivity information and spa-

tial locality. In [32], Voronoi diagram based look-up tables were

designed to avoid network traversal. [26] presented a two-phase

convex-hull-based pruning technique for both exact and approxi-

mate solutions. As these efforts only consider the facility placement

but not reallocation, thus are orthogonal to our problem setting

and cannot be applied to address 𝑘-FR.

Facility relocation. For the first time, [23] considered the re-

moval of old facilities in the facility location problem, which is the

prototype of the FR problem, and proposed three approximate algo-

rithms to solve the problem. But in this study, the distance between

users and facilities is assumed to be known, which is not guaranteed

in our problem. [11] studied the re-planning of ambulances, which

is essentially a special FR problem, which means that all facilities

are relocated. They proposed a PAM-based method to solve this

problem. Since it may not be necessary to relocate all facilities in

𝑘-FR, this method cannot solve the 𝑘-FR problem. [7] studied the
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mobile facility location problem, in which users and facilities need

to be relocated at the same time. However, only facilities can be

relocated in 𝑘-FR, so this method is not applicable. Therefore, none

of the above methods can be used to solve the 𝑘-FR problem.

[18] considered a FR problem very similar to our setting. Based

on Replacement Influence Distance, which is used to restrict the

search space, they solved this problem in Euclidean space. [21]

studied the FR problem on road network and they proposed two

methods, depending on whether an index can be prepared before-

hand, to solve the problem. However, they only consider the 1-FR

problem, but fails to provide robust solution towards the 𝑘-FR. In

fact, although [21] focuses on the 1-FR, the author extensively dis-

cussed how their solution to 1-FR can be extended to a heuristic

solution in order to address the 𝑘-FR. Besides, they failed to provide

any theoretical or empirical study for their efficacy or efficiency

in 𝑘-FR setting. In this work, we give a thorough study over their

proposed strategy and unveil that 1) although failing to guarantee

the result approximation ratio, the heuristic solution can be as good

as, or even superior to, our basic approximation scheme; 2) the

scenarios where the heuristic solution fails to provide acceptable

results are also identified by our exhaustive study.

3 PRELIMINARIES
According to our discussion in Section 1, we should not restrict

the users to be static, thus hereby we shall introduce a group of

preliminaries that are used to model the movement of users.

3.1 Mobile Objects
In real life, moving objects are ubiquitous. To represent the move-

ment of an object, there are two ways: discrete (e.g., check-in data

[27]) and continuous (e.g., trajectory [31]). No matter which method

is used, a moving object is modeled as a set of positions [22] (e.g.,
sample points of a trajectory or check-ins at POIs). We must not

consider all of them, because it not only leads to costly computa-

tion, but also is inappropriate due to three kinds of valueless points:

noisy, passing-by and outlier. Noise [30] is caused by data or GPS

errors. Passing-by points are the points that the user only passes

through without performing any meaningful activities. The outlier

points are those visited occasionally. These points have little value

for us to find the correct result of FR.

On the other hand, as remarked in [12], moving users are inti-

mately associated with two major behaviors: frequently appearing

at some place and staying for a duration. Obvisouly, the points in

these locations are more important. Therefore, it makes sense to

identify these points (we called reference locations) from raw move-

ment history data, which enables us to pave the way to effectively

capture daily activity places for handling the 𝑘-FR problem.

3.2 Capturing Reference Locations
We adopt the same strategy as [21] to identify the reference lo-

cations, employing the kernel method. Kernel method has been

widely used in a variety of domains, including the detection of fre-

quent activity places for humans [24]. We use the standard bivariate

normal density kernel, which is

𝑓 (⟨𝑥,𝑦⟩) = 1

𝑛ℎ2

𝑛∑︁
𝑖=1

1

2𝜋
𝑒𝑥𝑝 (−𝑑𝜀 (⟨𝑥,𝑦⟩)(⟨𝑥𝑖 , 𝑦𝑖 ⟩)

2ℎ2
)

and set ℎ : ℎ = 1

2
(𝜁 2𝑥 , 𝜁 2𝑦)

1

2𝑛−
1

6 following [24]. For a more detailed

introduction to the kernel method, please refer to [24].

In line with [12], we capture reference locations of each user as

follows. We discretize the continuous space into grids and evaluate

the density for each of them. The top-5% grids with the highest

density are selected. Inspired by the notion of reference spot [12],

we aggregate the adjacent grids among the selected ones together

to form a series of grid groups. In each group, the peak grid with

the highest density is intuitively regarded as a reference location.

Moreover, the density accumulation of each group is normalized

and viewed as the probability that a user appears nearby the corre-

sponding reference location.

4 PROBLEM DEFINITION
In order to formally define the 𝑘-FR problem, we introduce some

necessary terminologies. A location 𝑙 in this paper is a planar posi-

tion on an edge in a given directed road network 𝐺 (𝑉 , 𝐸), with a

geographical coordinate (i.e., latitude and longitude). Each directed

edge in 𝐸 between a pair of vertices in 𝑉 is associated with a posi-

tive cost, i.e., travel distance or time etc. Given any two locations

𝑙1 and 𝑙2, the directed network distance from 𝑙1 to 𝑙2 is denoted by

𝑑 (𝑙1, 𝑙2), which may not be equal to 𝑑 (𝑙2, 𝑙1). Since the locations

of existing facilities (resp., candidates to deploy a substitute) can

usually be obtained precisely, we denote facilities (resp., candidates)
as a set of locations 𝐹 = {𝑓1, . . . , 𝑓 |𝐹 |}(resp.,𝐶 = {𝑐1, . . . , 𝑐 |𝐶 |}),
where |𝐹 | (resp., |𝐶 |) is the cardinality of 𝐹 (resp., 𝐶). For a user

at location 𝑙 the network nearest facilities with respect to 𝐹 are

denoted as 𝑛𝑛(𝐹, 𝑙), and the network distances from 𝑙 to it is de-

fined as 𝑑𝑛𝑛(𝐹, 𝑙) = 𝑑 (𝑙, 𝑛𝑛(𝐹, 𝑙)). A facility relocation (FR) pair that

consists of 𝑘 obsolete facilities 𝐹𝑘 ⊆ 𝐹 and 𝑘 candidates 𝐶𝑘 ⊆ 𝐶

for substitution is defined as ⟨𝐹𝑘 ,𝐶𝑘 ⟩. For a user located at 𝑙 if

⟨𝐹𝑘 ,𝐶𝑘 ⟩ is carried out, the distance to his nearest facility will be-

come 𝑑𝑛𝑛(𝐹 \ 𝐹𝑘 ∪𝐶𝑘 , 𝑙).
To minimize the average distance between users and their respec-

tive nearest facilities, we have to identify their locations first. How-

ever, as discussed in Section 3, a mobile object 𝑢 may be present at

a set of 𝑛𝑢 reference locations 𝐿(𝑢) = {𝑟1, . . . , 𝑟𝑛𝑢 }. Let 𝑙 (·) denote
a reference location(s) where “·” is(are) present at, then 𝑙 (𝑢) ∈ 𝐿(𝑢)
and

∑𝑛𝑢
𝑖=1

𝑃𝑟 [𝑙 (𝑢) = 𝑟𝑖 ] = 1. Observe that this differs from the clas-

sical Min-dist criteria, where each object has only a single location.

How can we select the facility relocation pairs when considering

the users movement?

Similar to [3], we employ the notion of possible world [1]

to model the movements of users. Given a set of 𝑚 users 𝑈 =

𝑢1, . . . , 𝑢𝑚 , each user𝑢𝑖 is associated with reference locations 𝐿(𝑢𝑖 ),
then a possible world 𝑤 = (𝑟𝑤

1
, . . . , 𝑟𝑤𝑚 ) is a list of location in-

stances, one for each user, where 𝑟𝑤
𝑖

∈ 𝐿(𝑢𝑖 ). Assume that the

reference locations of users are independent from each other, then

𝑃𝑟 [𝑙 (𝑈 ) = 𝑤] = ∏𝑚
𝑖=1 𝑃𝑟

[
𝑙 (𝑢𝑖 ) = 𝑟𝑤

𝑖

]
. Let𝑊 be all possibleworlds,

then |𝑊 | =
( |𝐿 (𝑢1) |

1

)
...
( |𝐿 (𝑢𝑚) |

1

)
=
∏𝑚

𝑖=1 |𝐿(𝑢𝑖 ) |. It is obvious that∑
𝑤∈𝑊 𝑃𝑟 [𝑙 (𝑈 ) = 𝑤] = 1.

Note that for a particular possibleworld𝑤 , each user is associated

with only a single reference location. This is in line with the setting

of the Min-dist FR problem [13, 19].

Definition 4.1. Given a facility set 𝐹 , a possible world𝑤 , and a

FR pair ⟨𝐹𝑘 ,𝐶𝑘 ⟩, the change of total distance between all users
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𝑈 and their respective nearest facilities is defined as

Δ𝑤 (⟨𝐹𝑘 ,𝐶𝑘 ⟩) =
𝑚∑︁
𝑖=1

(
𝑑𝑛𝑛

(
𝐹, 𝑟𝑤𝑖

)
− 𝑑𝑛𝑛

(
𝐹 \ 𝐹𝑘 ∪𝐶𝑘 , 𝑟

𝑤
𝑖

) )
Δ𝑤 (⟨𝐹𝑘 ,𝐶𝑘 ⟩) can be an alternative to evaluate the final total

distance. When Δ𝑤 (⟨𝐹𝑘 ,𝐶𝑘 ⟩) is maximum, the final distance is

minimum. Hence, the FR pair with the maximal Δ𝑤 (⟨𝐹𝑘 ,𝐶𝑘 ⟩) is
the optimum in𝑤 with respect to the Min-dist criterion. As the dis-

tribution of Δ𝑤 for any FR pair is a random variable, it is reasonable

to evaluate the expected value over all possible worlds.

Definition 4.2. Given a set of facilities 𝐹 and a set of moving

users 𝑈 for all possible worlds𝑊 , the expected change of total
distance (ED) with respect to a FR pair ⟨𝐹𝑘 ,𝐶𝑘 ⟩ is defined as

Δ (⟨𝐹𝑘 ,𝐶𝑘 ⟩) =
∑︁
𝑤∈𝑊

(Δ𝑤 (⟨𝐹𝑘 ,𝐶𝑘 ⟩) × 𝑃𝑟 [𝑙 (𝑈 ) = 𝑤]) .

We are now ready to define the 𝑘-FR problem addressed in this

paper that incorporates the concepts of reference location and the

expected Min-dist criterion following possible world semantics.

Definition 4.3. Given a directed road network𝐺 and a set of users

𝑈 , each of whose movement can be modeled as a set of reference

locations, the 𝑘 facility relocation (𝑘-FR) problem aims to find

an FR pair ⟨𝐹𝑘 ,𝐶𝑘 ⟩ among a set of existing facilities 𝐹 and a set of

candidate locations 𝐶 such that

⟨𝐹𝑘 ,𝐶𝑘 ⟩𝑂𝑃𝑇 = 𝑎𝑟𝑔𝑚𝑎𝑥 ⟨𝐹𝑘 ,𝐶𝑘 ⟩Δ (⟨𝐹𝑘 ,𝐶𝑘 ⟩) .

To find the optimal FR pair with the maximum ED, we need

to calculate Δ𝑤 (⟨𝐹𝑘 ,𝐶𝑘 ⟩) for every 𝑤 ∈ 𝑊 , which requires enu-

merating all possible worlds. Unfortunately, since |𝑊 | increases
exponentially with |𝑈 |, it is impractical to directly compute ED us-

ing Definition 4.2. To address this challenge, we will show how the

ED computation can be transformed from the aspect of reference

locations and can be completed in polynomial time.

Definition 4.4. Let 𝑟𝑤 be the reference location of a user 𝑢 in a

possible world𝑤 . Then the expected nearest facility distance of
𝑢 with respect to 𝐹 in all possible worlds𝑊 is defined as

𝐸 [𝑑𝑛𝑛 (𝐹, 𝐿(𝑢))] =
∑︁
𝑤∈𝑊

(
𝑑𝑛𝑛

(
𝐹, 𝑟𝑤

)
× 𝑃𝑟 [𝑙 (𝑈 ) = 𝑤]

)
.

Lemma 4.5. [3] 𝐸 [𝑑𝑛𝑛 (𝐹, 𝐿(𝑢))] = ∑
𝑟 ∈𝐿 (𝑢) (𝑑𝑛𝑛 (𝐹, 𝑟 ) × 𝑝 (𝑟 )).

Theorem 4.6. [3] Given a set of facilities 𝐹 , a set of users𝑈 , and a
FR pair ⟨𝐹𝑘 ,𝐶𝑘 ⟩ the expected change of total distance in Definition
4.2 can be computed as

Δ (⟨𝐹𝑘 ,𝐶𝑘 ⟩) =
𝑚∑︁
𝑖=1

(𝐸 [𝑑𝑛𝑛 (𝐹, 𝐿(𝑢𝑖 ))] − 𝐸 [𝑑𝑛𝑛 (𝐹 \ 𝐹𝑘 ∪𝐶𝑘 , 𝐿(𝑢𝑖 ))]) .

Given the assumption that reference locations of users are inde-

pendent with each other, Theorem 4.6 can be derived, which means

that we no longer need to enumerate all possible worlds and the

complexity of ED significantly drops to linear.

5 SOLUTIONS TO 𝑘-FR
Intuitively, a brute-force approach to address the problem in Defi-

nition 4.3 can be described as follows. Find all possible 𝑘-FR pairs

〈
𝐹𝑝 ,𝐶𝑝

〉
(1 ≤ 𝑝 ≤ 𝑘), and return the best one i.e., with the maxi-

mumΔ(·). Unfortunately, the solution space is up to∑𝑘
𝑖=1

( 𝑖
|𝐹 |
)
×
( 𝑖
|𝐶 |

)
.

Obviously, the well-known 𝑘-median problem [6] is a special case

of 𝑘-FR when 𝐹 = ∅, and 𝑘-FR is at least as hard as the 𝑘-median.

Since the 𝑘-median problem is NP-Hard [8], it follows that problem

in Definition 4.3 is NP-Hard. Therefore, one practical way to ad-

dress the problem is to find a polynomial solution, either heuristic

or approximated.

To this end, [21] present a heuristic solution, referred to as 𝑘LNB,

which greedily selects the best 1-FR pair
2
one-after-another, in

each iteration the best 1-FR pair can be acquired by their proposed

solution to the 1-FR problem. However, as the 𝑘-FR problem is

neither submodular nor non-decreasing, this greedy strategy cannot

provide any approximation ratio [15]. We shall prove that in the

follows.

Definition 5.1. Consider an arbitrary function 𝜎 (·) that maps

subsets of a finite set 𝑃 to non-negative real numbers. We say that

𝜎 is submodular if 𝜎 (𝐴 ∪ {𝑣}) − 𝜎 (𝐴) ≥ 𝜎 (𝐵 ∪ {𝑣}) − 𝜎 (𝐵), for
all elements 𝑣 and all pairs of sets 𝐴 ⊆ 𝐵 ⊆ 𝑃 .

Lemma 5.2. [15] For a non-decreasing, submodular function 𝜎 ,
let 𝑆 be a set of size 𝑘 obtained by iteratively selecting the element
with the largest marginal increase in the function. Then 𝜎 (𝑆) ≥(
1 − 1

𝑒

)
· 𝜎 (𝑆∗), where 𝑆∗ is the optimal solution; in other words, 𝑆

provides an
(
1 − 1

𝑒

)
-approximation ratio.

For the 𝑘-FR problem, where the function to be maximized is

Δ(·), which maps subsets of finite set 𝐹 ×𝐶 to real numbers. But this

function does not satisfy non-decreasing or submodular (Example 1

and Figure 2 justify that). Therefore, according to Lemma 5.2, the

𝑘LNB algorithm fails to provide the approximation ratio.

Example 1. In Figure 1 there are four references {𝑟11, 𝑟12, 𝑟21, 𝑟22},
two current facilities {𝑓1, 𝑓2} and two candidate facilities {𝑐1, 𝑐2}. If
we want to relocate 2 facilities, 𝑘LNB algorithm would find the 1-
FR pair ⟨𝑓 , 𝑐⟩ that brings the greatest distance reduction. In the first
iteration, all pairs and corresponding distance reductions are shown
in Figure 2(a). Obviously, the 𝑘LNB will select ⟨𝑓2, 𝑐2⟩, whose distance
reduction is 2. Then for the second iteration, pairs and reductions are
shown in Figure 2(b). ⟨𝑓1, 𝑐1⟩ will be selected. Obviously, the marginal
gain in the second iteration ( i.e., 4) is larger than the first ( i.e., 2).

Figure 1: An example of relocation of two facilities

5.1 A Basic Approximate Solution
5.1.1 Facility placement problem. Before presenting our first
approximate solution, we introduce a facility placement problem.

2
a special case of FR pair⟨𝐹𝑘 ,𝐶𝑘 ⟩, where 𝑘 = 1
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(a) 1-st iteration (b) 2-nd iteration

Figure 2: Marginal gain in different iterations

Algorithm 1: FR2FP Algorithm

Input: Road network𝐺 (𝑉 , 𝐸) ,𝑉 and 𝐸 are vertice and edges,

respectively; current facility locations 𝐹 ; candidate facility

locations𝐶 ; reference locations 𝑅; budget 𝑘

Output: Facility relocation (FR) pair ⟨𝐹𝑘 ,𝐶𝑘 ⟩
1 Let 𝐿 = 𝐹 ∪𝐶 ;

2 The result set 𝑆 = ∅ ;

3 The number of locations in 𝑆 that belong to𝐶 : 𝑛𝑢𝑚 = 0 ;

4 for i in 1 to |𝐹 | do
5 Calculate the total distance 𝐷 (𝑙) for each location in 𝐿 if it is

selected ;

6 select the location 𝑙𝑖 whose 𝐷 (𝑙) is minimum ;

7 𝑆 = 𝑆 ∪ 𝑙𝑖 ;

8 if 𝑙𝑖 ∈ 𝐶 then
9 𝑛𝑢𝑚 = 𝑛𝑢𝑚 + 1 ;

10 if 𝑛𝑢𝑚 == 𝑘 then
11 𝐿 = 𝐿 \𝐶 ;

12 end
13 else
14 𝐿 = 𝐿 \ {𝑙𝑖 } ;
15 end
16 end
17 return ⟨𝐹 \ 𝑆,𝐶 ∩ 𝑆 ⟩ ;

Definition 5.3. Given a directed road network𝐺 = (𝑉 , 𝐸), a set of
existing facility locations 𝐹 , a set of candidate facility locations 𝐶 ,

and a set of users𝑈 , suppose 𝐷𝑈 (𝐹 ) denote the aggregate distance
from each user in 𝑈 to the nearest facility in 𝐹 , then the goal of

the facility placement problem is to find 𝐶 ′ ⊆ 𝐶 (|𝐶 ′ | = 𝑘),

so that the total distance reduction, denoted as 𝜔𝑈 ,𝐹 (𝐹 ∪ 𝐶 ′) =

𝐷𝑈 (𝐹 ) − 𝐷𝑈 (𝐹 ∪𝐶 ′), is maximized
3
.

Theorem 5.4. 𝜔 (·) in Definition 5.3 is a non-decreasing submod-
ular function.

Proof. Firstly, ∀𝐴 ⊆ 𝐶,𝜔 (𝐴) ≥ 0. This is obvious, because

when a new facility is added, the distance from the user to the

nearest facility may only decrease or remain the same.

Secondly, ∀𝐴 ⊆ 𝐶,∀𝑙 ∈ 𝐶 −𝐴,𝜔 (𝐴 ∪ {𝑙}) ≥ 𝜔 (𝐴). The reason is

the same as the above. Thus, the function 𝜔 (·) is non-decreasing.
Lastly, suppose 𝐴 ⊆ 𝐵 ⊆ 𝐶,𝜔 (𝐴) ≥ 0, 𝜔 (𝐵) ≥ 0

∀𝑙, 𝑙 ∈ 𝐶 − 𝐵,𝜔 (𝐴 ∪ {𝑙}) − 𝜔 (𝐴) ≥ 𝜔 (𝐵 ∪ {𝑙}) − 𝜔 (𝐵)
Thus the function is submodular. □

5.1.2 Algorithm design. As discussed above, 𝑘-FR is not sub-

modular or non-decreasing, thus presenting an approximate solu-

tion is extremely challenging.

3
As𝑈 , 𝐹 are fixed in the problem, we shall use 𝜔 ( ·), 𝐷 ( ·) for short in the sequel

In fact, according to our study in Section 5.1.1, facility placement

problem is submodular and non-decreasing. Although the 𝑘-FR it-

self does not satisfy either property, is it possible for us to transform

it into a facility placement problem such that both properties can

be realized? Motivated by that, we propose to consider the 𝑘-FR

problem in the perspective of facility placement as follows.

Definition 5.5. Given a directed road network𝐺 = (𝑉 , 𝐸), current
facility locations set 𝐹 , candidate facility locations set 𝐶 and a

set of users 𝑈 , each of whose movement can be modeled as a set

of reference locations, and 𝜔 (·) is the total distance reduction in

Definition 5.3, then the 𝑘-FR problem from facility placement
perspective aims to find a set of locations 𝐻 from 𝐹 ∪𝐶 so that:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜔 (𝐻 ) s.t. |𝐻 | = |𝐹 | , |𝐻 ∩𝐶 | ≤ 𝑘 (1)

Theorem 5.6. Let 𝐻𝑂𝑃𝑇 be the optimal solution to problem4 5.5,
then it can be classified into two subsets, namely 𝐻𝐹

𝑂𝑃𝑇
= 𝐻𝑂𝑃𝑇 ∩ 𝐹

and 𝐻𝐶
𝑂𝑃𝑇

= 𝐻𝑂𝑃𝑇 ∩𝐶 where |𝐻𝐶
𝑂𝑃𝑇

| ≤ 𝑘 . Then ⟨𝐹 \𝐻𝐹
𝑂𝑃𝑇

, 𝐻𝐶
𝑂𝑃𝑇

⟩
is an optimal solution to problem 4.3. That is, the optimal solution
of problem 4.3 can be directly acquired from the optimal solution of
problem 5.5.

Proof. We shall prove, through contradiction, that

∀⟨𝐹𝑘 ,𝐶𝑘 ⟩,Δ(⟨𝐹𝑘 ,𝐶𝑘 ⟩) ≤ Δ(⟨𝐹 \ 𝐻𝐹
𝑂𝑃𝑇 , 𝐻

𝐶
𝑂𝑃𝑇 ⟩) .

Without loss of generality, suppose 𝐷 (Φ) denote the aggregate
distance for each user to her nearest facilities in Φ, then

𝜔 (𝐻 ) = 𝐷 (𝐹 ) − 𝐷 (𝐻 ), and Δ(⟨𝐹𝑘 ,𝐶𝑘 ⟩) = 𝐷 (𝐹 ) − 𝐷 (𝐹 \ 𝐹𝑘 ∪𝐶𝑘 ) .
(2)

As 𝐻𝑂𝑃𝑇 is the optimal solution to problem 5.5, then there is no

other 𝐻 such that 𝐷 (𝐻 ) < 𝐷 (𝐻𝑂𝑃𝑇 ).
Suppose ∃𝐹𝑘 ,𝐶𝑘 subject to 𝐹𝑘 ≠ 𝐹 \ 𝐻𝐹

𝑂𝑃𝑇
or 𝐶𝑘 ≠ 𝐻𝐶

𝑂𝑃𝑇
such

that Δ(⟨𝐹𝑘 ,𝐶𝑘 ⟩) > Δ(⟨𝐹 \ 𝐻𝐹
𝑂𝑃𝑇

, 𝐻𝐶
𝑂𝑃𝑇

⟩), then.

𝐷 (𝐹\𝐹𝑘∪𝐶𝑘 ) < 𝐷 (𝐹\(𝐹\𝐻𝐹
𝑂𝑃𝑇 )∪𝐻

𝐶
𝑂𝑃𝑇 ) = 𝐷 (𝐻𝐹

𝑂𝑃𝑇∪𝐻
𝐶
𝑂𝑃𝑇 ) (3)

Based on 𝐹𝑘 ,𝐶𝑘 , we can construct a candidate solution𝐻 = 𝐹 \𝐹𝑘 ∪
𝐶𝑘 to problem 5.5. Taking into account Equation 3, we hereby con-

structed a solution 𝐻 to problem 5.5 such that 𝐷 (𝐻 ) < 𝐷 (𝐻𝑂𝑃𝑇 ),
which contradict to the fact that there is no other 𝐻 satisfying

𝐷 (𝐻 ) < 𝐷 (𝐻𝑂𝑃𝑇 ).
Hence, ⟨𝐹 \ 𝐻𝐹

𝑂𝑃𝑇
, 𝐻𝐶

𝑂𝑃𝑇
⟩ is an optimal solution to problem

4.3. □

Corollary 1. Suppose 𝐻𝑎𝑝𝑝 is a solution of problem 5.5 with ap-
proximation ratio 𝑝 , i.e.,𝜔 (𝐻𝑎𝑝𝑝 ) ≥ 𝑝𝜔 (𝐻𝑂𝑃𝑇 ), then ⟨𝐹\𝐻𝐹

𝑎𝑝𝑝 , 𝐻
𝐶
𝑎𝑝𝑝 ⟩

is a 𝑝-approximate solution to problem 4.3.

Proof. According to Equation 2, 𝜔 (𝐻𝑎𝑝𝑝 ) = 𝐷 (𝐹 ) − 𝐷 (𝐻𝐹
𝑎𝑝𝑝 ∪

𝐻𝐶
𝑎𝑝𝑝 ). Similarly, 𝜔 (𝐻𝑂𝑃𝑇 ) = 𝐷 (𝐹 ) −𝐷 (𝐻𝐹

𝑂𝑃𝑇
∪𝐻𝐶

𝑂𝑃𝑇
). Therefore,

𝐷 (𝐹 ) − 𝐷 (𝐻𝐹
𝑎𝑝𝑝 ∪ 𝐻𝐶

𝑎𝑝𝑝 ) ≥ 𝑝 (𝐷 (𝐹 ) − 𝐷 (𝐻𝐹
𝑂𝑃𝑇

∪ 𝐻𝐶
𝑂𝑃𝑇

)).
Additionally, according to Equation 2,

Δ(⟨𝐹 \ 𝐻𝐹
𝑎𝑝𝑝 , 𝐻

𝐶
𝑎𝑝𝑝 ⟩) = 𝐷 (𝐹 ) − 𝐷 (𝐹 \ (𝐹 \ 𝐻𝐹

𝑎𝑝𝑝 ) ∪ 𝐻𝐶
𝑎𝑝𝑝 )

≥ 𝑝 (𝐷 (𝐹 ) − 𝐷 (𝐻𝐹
𝑂𝑃𝑇 ∪ 𝐻𝐶

𝑂𝑃𝑇 ))
= 𝑝Δ(⟨𝐹 \ 𝐻𝐹

𝑂𝑃𝑇 , 𝐻
𝐶
𝑂𝑃𝑇 ⟩)

4
We shall use problem 𝑥 , for short, to refer to the problem defined in Definition 𝑥 .
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(a) 1-st iteration (b) 2-nd iteration

Figure 3: Total distances in iterations according to FR2FP

As ⟨𝐹 \𝐻𝐹
𝑂𝑃𝑇

, 𝐻𝐶
𝑂𝑃𝑇

⟩ is an optimal solution to problem 4.3 according

to Theorem 5.6, then ⟨𝐹 \𝐻𝐹
𝑎𝑝𝑝 , 𝐻

𝐶
𝑎𝑝𝑝 ⟩ is a 𝑝-approximate solution

to problem 4.3. □

As problem 5.5 is a special case of facility placement problem.

It is both submodular and non-decreasing, such that a hill-climb

solution can guarantee the approximation ratio in the results. Ac-

cordingly, we are now ready to propose a basic approximation

strategy towards both problems, namely FR2FP (Facility Reloca-

tion to Facility Placement), showed in Algorithm 1. The algorithm

begins by computing the 𝐷 (𝑙) for each location 𝑙 ∈ 𝐹 ∪ 𝐶 (Line

5), which represents the total distance between all users and his

nearest facility after joining the location 𝑙 . Every time it will select

the location 𝑙 with the minimum 𝐷 (𝑙) until |𝐹 | locations (Line 6).
Each time a location 𝑐 ∈ 𝐶 is selected, it will increase the count

of locations selected from 𝐶 . Whenever the number is up to 𝑘 , it

removes all locations in 𝐶 from 𝐿 (Lines 8-12).

Example 2. In Figure 1, FR2FP assumes that there is no current
facility, and then gradually selects the facility that can bring the
minimum value in 𝐷 (). In the first iteration, the total distance after
adding each facility is shown in Figure 3(a). Because the distance after
adding 𝑐1 is the smallest, it will be selected as the first facility. Since
𝑐1 belongs to 𝐶 , we need to judge whether the number of locations
selected from 𝐶 (1 at the current timestamp) has reached 𝑘 ( i.e., 2 in
the example). If not, we carry on to select the next facility. According to
Figure 3(b), 𝑐2 is the best choice with the minimum total distance 45 in
the second iteration. The total number of locations selected now reaches
𝑘 = 2. Thus, FR2FP will stop with the final facility set {𝑐1, 𝑐2}. The
𝑘-FR pairs selected by FR2FP is ⟨𝐹2,𝐶2⟩ (𝐹2 = {𝑓1, 𝑓2},𝐶2 = {𝑐1, 𝑐2}).

5.1.3 Theoretical study. In this part, we shall theoretically prove

that FR2FP guarantees the results quality of problem 4.3. Firstly, we

prove the approximation ratio of Algorithm 2 to problem 5.7, as well

as the correlation between Algorithm 1 and Algorithm 2. Finally,

we obtain the approximation ratio of Algorithm 1 to problem 5.5.

To prove that, we shall firstly remove the constraint of |𝐻∩𝐶 | ≤ 𝑘

in Equation 1, which results in a new problem as follows.

Definition 5.7. Given a directed road network𝐺 = (𝑉 , 𝐸), the set
of selected locations ∅, current facility locations set 𝐹 , candidate

facility locations set𝐶 and a set of users𝑈 , each of whosemovement

can be modeled as a set of reference locations, the new problem
aims to find a set of locations 𝐻 from 𝐹 ∪𝐶 so that:

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝜔 (𝐻 ) s.t. |𝐻 | = |𝐹 |

As this problem is in fact a facility placement problem defined

in Definition 5.3, according to Theorem 5.4, it is also non-decrease

and submodular. Suppose the optimal solutions of the problem 5.7

Algorithm 2: Relaxed FR2FP Algorithm

Input: Road network𝐺 (𝑉 , 𝐸) ,𝑉 and 𝐸 are vertice and edges,

respectively; current facility locations 𝐹 ; candidate facility

locations𝐶 ; reference locations 𝑅;

Output: Final facility location set 𝑆 ( |𝑆 | = |𝐹 |)
1 Let 𝐿 = 𝐹 ∪𝐶 ;

2 The result set 𝑆 = ∅ ;

3 The number of locations in 𝑆 that belong to𝐶 𝑛𝑢𝑚 = 0 ;

4 for i in 1 to |𝐹 | do
5 Calculate the total distance 𝐷 (𝑙) for each location in 𝐿 if it is

selected ;

6 select the location 𝑙𝑖 whose 𝐷 (𝑙) is minimum ;

7 𝑆 = 𝑆 ∪ 𝑙𝑖 ;

8 𝐿 = 𝐿 \ {𝑙𝑖 } ;
9 end

10 return 𝑆 ;

and 5.5 are respective 𝑆∗ and 𝑆 , it’s clear that

𝜔
(
𝑆∗
)
≥ 𝜔 (𝑆) (4)

For the new problem 5.7, we can reuse FR2FP generally, except

for removing the restriction |𝐻 ∩𝐶 | ≤ 𝑘 , such that a relaxed version

is proposed in Algorithm 2. It is almost the same as Algorithm 1,

except that the returned format is different and the number of

selected locations in 𝐶 is not checked. Therefore, every time it can

select the location that brings the most profit (maximum distance

reduction or minimum total distance).

According to Lemma 5.2 and our discussion of Definition 5.7, Al-

gorithm 2 can achieve

(
1 − 1

𝑒

)
approximation ratio for problem 5.7.

Lemma 5.8. Let 𝑝𝑙 (𝐻 ) = 𝜔 (𝐻 ∪ {𝑙}) − 𝜔 (𝐻 ). In 𝑖-th iteration,
suppose 𝐻𝑖 and 𝑙𝑖 denote the locations that have been selected before-
hand and in the current iteration ( i.e., 𝑖) by Algorithm 2, respectively,
then

𝑝𝑙𝑖 (𝐻𝑖 ) ≥ 𝑝𝑙𝑖+1 (𝐻𝑖+1)

Proof. Algorithm 2 selects the location which brings the most

profit every time, so 𝑝𝑙𝑖 (𝐻𝑖 ) ≥ 𝑝𝑙𝑖+1 (𝐻𝑖 ).
As the function 𝜔 (·) is submodular, then 𝑝𝑙𝑖+1 (𝐻𝑖 ) ≥ 𝑝𝑙𝑖+1 (𝐻𝑖+1).
Finally, we have 𝑝𝑙𝑖 (𝐻𝑖 ) ≥ 𝑝𝑙𝑖+1 (𝐻𝑖+1). □

Lemma 5.9. For problem 5.7, suppose the facility sets selected by
Algorithm 1 and 2 are 𝑆𝑏 , 𝑆𝑐 , respectively. Then 𝜔 (𝑆𝑏 ) ≥

𝑔

|𝐹 | · 𝜔 (𝑆𝑐 ),
where 𝑔 (𝑔 ≥ 𝑘) denotes the number of locations eventually selected
in 𝐹 ∪𝐶 .

Proof. Suppose the locations selected byAlgorithm 2 is 𝑙1, . . . , 𝑙 |𝐹 |
in order. According to Lemma 5.8, 𝑝𝑙1 (𝐻1) ≥ . . . ≥ 𝑝𝑙 |𝐹 | (𝐻 |𝐹 |). Re-
sult of Algorithm 1 is exactly the same as that obtained byAlgorithm

2 before finding 𝑘 facilities in 𝐶 . Assuming that the 𝑘-th facility in

𝐶 is found at the 𝑔-th iteration (𝑔 ≥ 𝑘 , because it contains facilities

in 𝐹 ), then Algorithm 1 obtains the top 𝑔 maximums in the result of

Algorithm 2. Let the result obtained by the Algorithm 1 be divided

into two parts: 𝑆𝑏1 and 𝑆𝑏2. 𝑆𝑏1 represents the first𝑔 locations. Then

𝜔 (𝑆𝑏1) ≥
𝑔

|𝐹 | · 𝜔 (𝑆𝑐 ).

As 𝜔 (𝑆𝑏1 ∪ 𝑆𝑏2) ≥ 𝜔 (𝑆𝑏1), then 𝜔 (𝑆𝑏 ) ≥
𝑔

|𝐹 | · 𝜔 (𝑆𝑐 ). □
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Algorithm 3: FR2FP-ex Algorithm
Input: Road network𝐺 (𝑉 , 𝐸) ,𝑉 and 𝐸 are vertice and edges,

respectively; current facility locations 𝐹 ; candidate facility

locations𝐶 ; reference locations 𝑅; budget 𝑘 ;

Output: Facility relocation (FR) pair ⟨𝐹𝑘 ,𝐶𝑘 ⟩
1 FR pair ⟨𝐹𝑘 ,𝐶𝑘 ⟩ = FR2FP(𝐺 , 𝐹 ,𝐶 , 𝑅);

2 Let 𝑆 = 𝐹 ∪𝐶𝑘 \ 𝐹𝑘 ;

// final facility locations selected by FR2FP

3 Let 𝐿 = 𝐶 ∪ 𝐹𝑘 \𝐶𝑘 ;

// all locations not selected by FR2FP

4 while true do
5 Select the interchange pair < 𝑙, 𝑠 > (𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆′) which is the

same type and brings the maximum distance reduction ;

6 if the reduction ≤ 0 then
7 break ;

8 else
9 𝑆′ = 𝑆′ ∪ {𝑙 } \ {𝑠 } ;

10 𝐿 = 𝐿 ∪ {𝑠 } \ {𝑙 } ;
11 end
12 end
13 return ⟨𝐹 \ 𝑆′, 𝑆′ ∩𝐶 ⟩

Theorem 5.10. For the original facility relocation problem in Def-
inition 5.5 the FR2FP algorithm showed in Algorithm 1 can achieve
𝑔

|𝐹 |

(
1 − 1

𝑒

)
approximation ratio.

Proof. According to Lemma 5.2 and 5.9

𝜔 (𝑆𝑏 ) ≥
𝑔

|𝐹 |

(
1 − 1

𝑒

)
· 𝜔 (𝑆∗)

In addition, as 𝜔 (𝑆∗) ≥ 𝜔 (𝑆), then

𝜔 (𝑆𝑏 ) ≥
𝑔

|𝐹 |

(
1 − 1

𝑒

)
· 𝜔 (𝑆)

□

According to Theorem 5.10 as well as Corollary 1, FR2FP can

achieve
𝑔

|𝐹 |

(
1 − 1

𝑒

)
approximation ratio for problem 4.3.

Moreover, if we use the greedy algorithm to find the solution of a

non-decreasing submodular function, there is an another theorem.

Theorem 5.11. [15] For the non-decreasing submodule set function
𝑍 defined on the set𝑁 and the objective function𝑚𝑎𝑥

𝑆⊆𝑁
{𝑍 (𝑆) : |𝑆 | ≤ 𝑘},

if the greedy algorithm is used to solve the problem and it stops at
step 𝑘 ′ ≤ 𝑘 , then greedy algorithm get the optimal solution.

According to Theorem 5.11, if Algorithm 2 has reached the max-

imum distance reduction after finding 𝑛(𝑛 < |𝐹 |) facilities, then
the solution is the optimal solution. Then the approximate ratio of

Algorithm 1 will correspondingly become
𝑔

|𝐹 | .

5.2 An Advanced Approximate Solution
The approximation rate of the FR2FP algorithm is

𝑔

|𝐹 |

(
1 − 1

𝑒

)
,

where 𝑔 is lower bounded by 𝑘 . Only when 𝑘 is big enough, the

approximation ratio of the FR2FP is high (empirically justified in 6).

To avoid this problem, we propose an advanced algorithm, namely

FR2FP-ex (FR2FP with exchange). The idea is to add an exchange

after getting the results from FR2FP. The pseudo code is shown

Table 1: Real facilities of CA and BJ

CA |𝐹 | BJ |𝐹 |
Hospital 1000 Bank 1000

Park 1000 Cafe 1000

Post Office 1000 Logistic 1000

School 1000 Gas Station 1000

in Algorithm 3. Assuming that all facilities are classified into two

groups according to whether they originally belonged to 𝐹 or 𝐶 ,

then the facilities in 𝑆 also belong to both groups accordingly. Let

𝐿 be all the facilities except 𝑆 , which also belong to either 𝐹 or

𝐶 . The exchange is performed iteratively. Each time it selects the

exchange pair ⟨𝑙, 𝑠⟩ that brings the greatest distance reduction (Line

5). Both facilities in the pair must belong to the same group (both in

𝐹 or𝐶), which ensures the number of facilities in𝐶 will not exceed

𝑘 . Whenever the current exchange pair does not cause the total

distance to decrease, the algorithm stops (Lines 6-7).

The idea of the exchange is not complicated, but when 𝑘 is small,

it shows significant improvement comparing the FR2FP. Moreover

the FR2FP-ex is executed based on the results of FR2FP, the results it

obtains is at least as good as that of the FR2FP. Therefore, FR2FP-ex

still guarantees the approximate ratio.

6 EXPERIMENTS
In this section, we empirically evaluate the performance of the

proposed approximate solutions.

6.1 Experimental Setup
Datasets. Two real-world datasets, California (CA)[10] and Beijing
(BJ), are adopted in our experiment. Both of them are get from the

author of [21]. There are 21,693 bidirectional edges and 21,047 ver-

tices in CA. BJ consists of 433,391 unidirectional edges and 171,504

vertices. The type and number of facilities in each dataset are shown

in Table 1. Notably, there are many type of facilities in each dataset,

we randomly select 4 types from each dataset in our empirical study.

The users in BJ dataset is available from[31]. Each user has 136,686

sample points on average. For CA, we adopt a real-world check-in

data
5
. The real data are all clustered and distributed in a certain

area as shown in Figure 4. Hence, we constructed user data evenly

distributed on the road network and the probability of reference

locations of each user is generated randomly. Candidate facilities

are constructed in two ways
6
: 1) uniformly randomly generated

geographically; 2) constructed according to the distribution of users.

The former is used by default.

(a) CA (b) BJ

Figure 4: User distribution in the two datasets
5
Obtained from http://snap.stanford.edu/data/.

6
For the objects that are not exactly located on roads, we shift them to the closest

point of on the road network.
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(a) CA:1000 park (b) BJ:1000 bank

Figure 5: Effectiveness comparison

Compared solutions.We report the performance of the following

three algorithms, which are implemented in C++ and tested on a

3.2GHz quad-core machine with 16G RAM.

• 𝑘LNB: The heuristic solution of [21], which iteratively select

the optimal 1-FR pair for 𝑘 times.

• FR2FP: The approximate solution proposed in Algorithm 1.

• FR2FP-ex: The advanced solution proposed in Algorithm 3.

6.2 Experimental Results
Comparison of the solutions. Firstly, we vary the size of 𝐹 from

100 to 1000 to test the performance of the three approaches. The

phenomenon found in all the tests are similar, so for each dataset we

only select one type of facility, shown in Figure 5. The x-axis and y-

axis respectively represent 𝑘 and the aggregated distance from the

user to the nearest facility. From the figure, we can see that when

𝑘 is small, the performance of FR2FP is the worst, even inferior to

𝑘LNB. This is mainly caused by the following two reasons:

• The approximate ratio of FR2FP is
𝑔

|𝐹 |

(
1 − 1

𝑒

)
. This approx-

imate rate is closely related to the value of 𝑔, which is lower

bounded by 𝑘 . When 𝑘 is small, 𝑔 has small lower bound,

leading to a low approximation ratio.

• Although the 𝑘LNB does not provide any guarantee, if only

one facility is relocated, this algorithm can guarantee the

optimal solution.

As 𝑘 continues to increase, the performance of FR2FP gets better

and better. According to the empirical results of FR2FP algorithm,

when 𝑘 is large enough, the value of 𝑔 approaches |𝐹 |, which means

that the approximate rate of FR2FP is nearly

(
1 − 1

𝑒

)
.

There is another interesting phenomenon: for the BJ dataset,

with the increase of 𝑘 , FR2FP is ultimately better than 𝑘LNB. In

comparison, in CA both solutions finally reached the same effective-

ness. We shall discuss our insight of this difference in the follows.

As the number of reference locations in the BJ dataset is only 400,

there exist the following facts during the execution of FR2FP. The

FR2FP algorithm originally needs to select |𝐹 | facilities. But when
𝑛(𝑛 ≤ |𝐹 |) facilities are selected, even if more facilities are added,

the total distance won’t decrease anymore. That is, the marginal

benefit becomes 0. According to Theorem 5.11, when the marginal

benefit is 0, the approximate ratio of FR2FP is
𝑔

|𝐹 | . With the increase

of 𝑘 , 𝑔 is close to |𝐹 |. In the CA dataset, the number of reference

points is up to 22227, and the above scenario will not occur. Thus,

the approximate ratio of the FR2FP is still
𝑔

|𝐹 | (1 −
1

𝑒 ). Therefore, in
the BJ dataset, the performance of FR2FP is better than 𝑘LNB when

𝑘 is large enough.

We can also find that FR2FP-ex consistently performs the best

among the three. Notably, as response time is not a key factor in this

mining task, and there is no significant difference in the running

time for the solutions empirically, we select not to report them in

detail due to limit of space.

Effect of facility distribution. In order to investigate whether

the distribution of facilities 𝐹 will affect the performance of the

algorithms, we randomly select 2 types of facilities in both datasets,

i.e., the cafe and station of BJ and the park and school of CA. The

distributions of the facilities are shown in Figure 6. The performance

for the three solutions accordingly are shown in Figure 7. Compared

with Figure 5, we can see that the distribution of facilities has

negligible effect on the performance of the algorithms.

Effect of users distribution. Besides, we also test whether the

distribution of users will affect the performance of the algorithms.

To this end, we randomly generate a series of uniformly distributed

user points while keeping all the facilities, candidates and road net-

works the same as the above experiments. Since the experimental

results are similar, we select to show two of them, in Figure 8, due

to the limit of space. We can found the result is similar to Figure 5,

i.e., FR2FP-ex performs the best, FR2FP and 𝑘LNB dominate each

other depending on 𝑘 .

Effect of candidate distribution. Finally, we also propose to test
the effect of candidate distribution. To this end, we vary the can-

didate facility distribution according to 1) uniform distribution; 2)

clustered distribution according to the density of users, respectively.

By comparing between the results w.r.t. both distributions, there

is no oblivious difference. That is, the candidate distribution has

negligible effect on the performance of the three solutions.

7 EXTENSIVE STUDY OF 𝑘LNB IN [21]
Through the above experiments, we found that although the 𝑘LNB

does not have an approximate ratio, its performance is surprisingly

superior to the FR2FP solution when 𝑘 is small. However, as 𝑘LNB

fails to guarantee the results quality while FR2FP does, there should

exist cases that 𝑘LNB fails to work. Driven by that, we conduct

extensive study, and finally find the cases that 𝑘LNB fail to perform

well: when multiple facilities need to be relocated at the same time,
and the relocation of anyone of the facilities alone cannot bring the
distance reduction.

Figure 10 shows an example of this scenario. For ease of dis-

cussion, we assume that Euclidean distance, which does not affect

our conclusion in this example. According to the distance (the blue

number) marked on the figure, we can calculate the distance be-

tween each user and the facilities, shown in Table 2. Suppose we are

relocating two facilities, according to Table 3, no matter which pair

is selected, it cannot bring a positive distance reduction. Therefore,

𝑘LNB will output nothing. Nevertheless, if we relocate 𝑓1 and 𝑓2
at the same time, the distance will decrease eventually. Suppose

FR2FP is adopted in this scenario, it will selects 𝑐1 first, and then

𝑐2, which is obviously better than 𝑘LNB.

Although the 𝑘LNB algorithm does not have an approximate

rate guarantee, it performs good in many cases, even better than

FR2FP when 𝑘 is small. However, it may encounter some awkward

situations as shown in Figure 10. Due to that, we recommend to

use FR2FP-ex algorithm to solve the 𝑘-FR problem, as it not only
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(a) CA park (b) CA school (c) BJ cafe (d) BJ station

Figure 6: Distribution of different facilities

(a) CA park (b) CA school (c) BJ cafe (d) BJ station

Figure 7: Effect of facilities distribution

(a) CA:1000 park (b) BJ:1000 bank

Figure 8: Results of evenly distributed users

(a) CA:1000 park (b) BJ:1000 bank

Figure 9: Effect of candidates distribution

Figure 10: A failure scenario of 𝑘LNB

has the same result quality guarantee as FR2FP, but also exhibits

the best practical performance among the solutions.

8 CONCLUSION
Although 𝑘-FR problem has a wide range of applications in real life,

the NP-hardness makes it difficult to find an algorithm reliable in

real application. In this paper, we proposed a pair of approximate

Table 2: Distances between users and facilities of Figure 10

user

facility

𝑓1 𝑓2 𝑐1 𝑐2

𝑢1
√
5

√
37

√
5

√
85

𝑢2
√
5

√
37

√
5 9

𝑢3
√
37

√
5

√
5 5

𝑢4
√
101

√
5

√
37 1

Table 3: Distance reductions for all 1-FR pairs in Figure 10

pairs reductions

⟨𝑓1, 𝑐1 ⟩ 0

⟨𝑓1, 𝑐2 ⟩ 3

√
5 − 1 − 2

√
37 < 0

⟨𝑓2, 𝑐1 ⟩
√
5 −

√
37 < 0

⟨𝑓2, 𝑐2 ⟩ 2

√
5 − 6 < 0

solution to 𝑘-FR by transforming the problem into an equivalent

facility placement one. To the best of our knowledge, they are the

first approximate solutions. We also found that the state-of-the-

art heuristic solution, 𝑘LNB proposed by [21], is effective in most

cases, although it does not provide an approximation ratio. Results

of exhaustive experiments show that the FR2FP-ex algorithm is

currently the best method for solving 𝑘-FR problem. We also ex-

tensively show the specific scenarios where 𝑘LNB fail to find valid

solutions.
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