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Abstract
Motivation: Cancer is a molecular complex and heterogeneous disease. Each type of cancer is usually composed of several subtypes with
different treatment responses and clinical outcomes. Therefore, subtyping is a crucial step in cancer diagnosis and therapy. The rapid advances
in high-throughput sequencing technologies provide an increasing amount of multi-omics data, which benefits our understanding of cancer
genetic architecture, and yet poses new challenges in multi-omics data integration.

Results: We propose a graph convolutional network model, called MRGCN for multi-omics data integrative representation. MRGCN simulta-
neously encodes and reconstructs multiple omics expression and similarity relationships into a shared latent embedding space. In addition,
MRGCN adopts an indicator matrix to denote the situation of missing values in partial omics, so that the full and partial multi-omics processing
procedures are combined in a unified framework. Experimental results on 11 multi-omics datasets show that cancer subtypes obtained by
MRGCN with superior enriched clinical parameters and log-rank test P-values in survival analysis over many typical integrative methods.

Availability and implementation: https://github.com/Polytech-bioinf/MRGCN.git https://figshare.com/articles/software/MRGCN/23058503.

1 Introduction

Cancer is a large family of diseases that can originate in almost
any organ or tissue of the human body when abnormal cells
grow uncontrollably, that is, beyond the usual boundaries, in-
vade adjacent areas of the body, and/or spread to other organs
(Hejmadi 2014). The traditional prediction of cancer is greatly
influenced by morphological evaluation of tumor, whereas some
tumors with similar histopathological appearance present re-
markably different clinical manifestations, courses, and even
outcome of therapy. The heterogeneity of cancer becomes the
major resistance of the development of effective therapies (Pasha
and Turner 2021). In some instances, the heterogeneity is trace-
able in the fact that morphologically similar tumors have several
subtypes with distinct pathogeneses and clinical features. Cancer
subtyping could effectively deal with interpatient heterogeneity
by stratifying patients into distinct groups in terms of risk factors
and clinical prognosis. Consequently appropriate cancer subtyp-
ing could induce target specific therapies and help in providing
more efficient treatment and minimizing toxicity on the patients.

The progress in high-throughput sequencing technologies has
provided the collection of various types of omics data with un-
precedented details. Some large national and international con-
sortia, such as The Cancer Genome Atlas (TCGA), have

collected thousands of biological tumor samples data from mul-
tiple molecular events. Integrating and analyzing these multi-
omics data representing information from different molecular
processes could improve holistic view of understanding of the
complex biology. Specifically, cancer is accumulation of muta-
tions and epimutations (Lynch et al. 2015, Belizario and
Loggulo 2019) and its heterogeneity results from genetic, tran-
scriptomic, epigenetic, and phenotypic changes. Thus cancer
subtyping using multi-omics data has been the crux of cancer di-
agnosis, prognosis and treatment.

A large number of multi-omics data integration methods
have been proposed over the years (Subramanian et al. 2020,
Duan et al. 2021). Most existing schemes adopt unsupervised
strategy, since supervised methods are based on annotating
samples, which requires time consuming and laborious clini-
cal follow-up, e.g. MoGCN (Li et al. 2022) adopts supervised
GCN to achieve patient classification. In addition, supervised
methodology assigns individual cancer samples to already-
defined subtypes, but the subtypes definition is still an open
problem (Popovici et al. 2017). Clustering-based methods are
not required to know the class labels in training, but just via
calculating the similarity in samples to obtain subgroups divi-
sion of patients. Early attempts of clustering-based integration
algorithms involve feature concatenation-based strategies and

Received: August 19, 2022. Revised: May 23, 2023. Editorial Decision: May 26, 2023. Accepted: May 30, 2023

VC The Author(s) 2023. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39(6), btad353
https://doi.org/10.1093/bioinformatics/btad353

Advance access publication 31 May 2023

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/6/btad353/7187027 by guest on 26 June 2023

https://orcid.org/0000-0001-6200-8727
https://github.com/Polytech-bioinf/MRGCN.git
https://figshare.com/articles/software/MRGCN/23058503


ensemble-based strategies (Tini et al. 2019). The feature
concatenation-based algorithms integrate data attribute from
different omics using the form of series connection directly
and run conventional clustering method, e.g. K-means
(Hartigan and Wong 1979) and spectral clustering (Von
Luxburg 2007) on the integrated data. A typical way of fea-
ture concatenation-based algorithms is LRAcluster (Wu and
Lai 2015). The ensemble-based algorithms fuse the prediction
results from different clustering models trained on each type
of omics data individually, e.g. CC (Monti 2003) and PINS
(Nguyen et al. 2017). However, these algorithms ignore the
correlations among different omics data types. Recently,
many integration algorithms try to construct a holistic repre-
sentation learning model for exploiting the interactions across
different omics data types and have gradually become main-
stream. For example, MCCA (Witten and Tibshirani 2009)
adopts sparse canonical correlation analysis to find highly
correlated omics data. iCluster (Shen et al. 2009) develops a
joint Gaussian latent variable model to express multi-omics
data as sparse linear codes on an inherent low dimensional
representation. iClusterBayes (Mo et al. 2018) tries to find a
few latent variables via Bayesian variable selection and
describes the inherent structure in multiple omics data. SNF
(Wang et al. 2014) constructs neighborhood graph of samples
for each omics data individually and then uses message pass-
ing theory to fuse these graphs into a uniform similarity net-
work. SNFCC (Xu et al. 2017) combines SNF and CC
algorithms to predict the cancer subtypes. NEMO
(Rappoport and Shamir 2019) constructs one similarity ma-
trix for each omics data using radial basis function kernel and
averages all similarity matrices to achieve integration. MSNE
(Xu et al. 2021) utilizes random walk on multiple networks to
integrate similarity of samples and then projects the samples
into a low-dimensional space.

Clustering aims at dividing a group of unlabeled data into
several disjoint groups, such that the data in the same group
with high correlation to each other (Xia et al. 2022). Hence,
preserving the similarity relationship of samples plays a criti-
cal role in the clustering task. Graph Convolutional Network
(GCN) recently has been shown very effective in clustering,
since it calculates the embedding representation by incorpo-
rating preservation of graph architecture reflecting the simi-
larity relationships. The representative GCN models include
graph auto-encoder (Kipf et al. 2016), adversarial regularized
graph auto-encoder (Pan et al. 2018), deep attentional embed-
ded graph clustering approach (Wang et al. 2019), etc. The
decoder parts in abovementioned models reconstruct the
graph structure by using the inner product of the leaned em-
bedding representation. This strategy is merely applicable to
single view scenario, as there is only one graph structure need
to be reconstructed. When confronted with the multi-omics
data, i.e. multi-view learning problems, there are several
graph structures need to be reconstructed, the inner product
strategy would be invalidated, since inner product of the con-
sistent representation of multi-view data would generate one
and the only one reconstruction graph result. In addition, in
multi-omics analyses, there is a common phenomenon that
some samples only have measurements for a subset of the
omics (Rappoport and Shamir 2019). The sample missing
some omics data is called partial sample, and the multi-omics
dataset including the partial sample is called partial dataset.
The traditional GCN can only deal with full datasets, i.e. data

from all omics were measured for each patient, but cannot
handle the partial datasets without imputation.

Inspired by above insight analysis and the fact that GCN is
able to capture the nonlinear inherent representation, mean-
while preserves similarity relationship but cannot deal with par-
tial multi-omics datasets, we propose Multi-Reconstruction
Graph Convolutional Network (MRGCN) to identify cancer
subtypes. First, MRGCN constructs one graph for each omics
data using neighborhood relationships and encodes each omics
data to obtain individual embedding representation. Second,
MRGCN builds an indicator matrix to express the data missing
situation and integrates each individual embedding into a con-
sensus representation. Third, MRGCN decodes the consensus
representation to reconstruct graph structures and node attrib-
ute simultaneously. Furthermore, MRGCN adopts self-
supervised learning mechanism to enhance the discriminability
of consensus representation. Finally, all aforementioned parts
are incorporated into a joint optimization problem and solved
by the deep learning framework. The cancer subtyping is car-
ried out via spectral clustering based on the obtained consensus
representation.

To our best knowledge, MRGCN is the first attempt at us-
ing GCN to simultaneously reconstruct graph structures and
node attribute obtaining the latent representation in both full
and partial multi-omics data. Extensive computational experi-
ments on 11 datasets demonstrate the superiority of MRGCN
in cancer subtyping capability over corresponding solutions
to multi-omics data integration.

2 Materials and methods

MRGCN includes four modules, i.e. individual encoder, con-
sensus representation, node attribute reconstruction, and
graph structures reconstruction. Cancer subtyping is carried
out on the consensus representation via spectral clustering al-
gorithm. Each module and step will be detailed in the follow-
ing sections.

2.1 Notation

Let X ¼ fX ð1Þ;X ð2Þ; . . . ;X ðVÞg denote a multi-omics dataset,
where V is the number of omics. X ðvÞ ¼ ½xðvÞ1 ;x

ðvÞ
2 ; . . . ;x

ðvÞ
Nv
�T 2

R
Nv�Dv is a collection of Nv data samples with dimension Dv

in vth omics measurements, where v ¼ 1; 2; . . . ;V. A ¼
fAð1Þ;Að2Þ; . . . ;AðVÞg is the corresponding graph structure ma-
trix set, where AðvÞ 2 R

Nv�Nv . The consensus representation is
H ¼ ½h1;h2; . . . ; hN�T 2 R

N�d, where d is the ultimate dimen-
sion of consensus embedding space. N, N � Nv is the sample
size of intact data and jj � jj2F is the Frobenius norm.

2.2 The framework of MRGCN

As shown in Fig. 1, MRGCN contains four principal mod-
ules. First, each omics data X ðvÞ and the corresponding graph
structures AðvÞ are encoded into ZðvÞ via the individual en-
coder module. Then, ZðvÞ is fed into consensus representation
module and obtain H. Finally, the node attribute reconstruc-
tion module and graph structure reconstruction module
achieve multi-reconstruction conducted on H.

2.2.1 Individual encoder

One similarity graph is constructed for each omics data, as
follows:
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A
ðvÞ
ij ¼

1; if x
ðvÞ
i 2 Nei

�
x
ðvÞ
j

�
or x

ðvÞ
j 2 Nei

�
x
ðvÞ
i

�
0; otherwise

(
(1)

where NeiðxðvÞj Þ denotes the neighbor set of xj in vth omics
measurements. The individual encoder of each omics is a non-
linear function f ðAðvÞ;X ðvÞjW ðvÞÞ ! ZðvÞ, that maps vth omics
data attribute X ðvÞ and corresponding similarity graph struc-
ture AðvÞ into the individual embedding ZðvÞ, where W ðvÞ is
parameters in individual encoder. The outputs of mth encoder
layer are computed as follows:

ZðvÞm ¼ u DðvÞ
�1

2
AðvÞ

0
DðvÞ

�1
2
Z
ðvÞ
m�1W ðvÞ

m

� �
(2)

where m ¼ 1;2; . . . ;M and M is the layer number of encoder.
AðvÞ

0
¼ AðvÞ þ I and I is the identity matrix. D

ðvÞ
ii ¼

P
j A
ðvÞ0
ij

and W ðvÞ
m is the encoder model parameters of mth layer need

to be determined by training. u is the nonlinear activation
function, which is set as tanh function in MRGCN. With re-
spect to ZðvÞm , when m¼ 1, let Z

ðvÞ
0 ¼ X ðvÞ, which is the original

vth omics data, and when m¼M, let ZðvÞ ¼ Z
ðvÞ
M , which is the

individual embedding of vth omics data. It is noteworthy that
the individual embedding of each omics data should has the
same feature dimension, that is, the numbers of columns for
each ZðvÞ ¼ ½zðvÞ1 ; z

ðvÞ
2 ; . . . ; z

ðvÞ
N �

T are all equal to d.

2.2.2 Consensus representation

The measurements from different omics reflect different
aspects of the same disease, but they also with the consensus
sematic information, such as the same cluster label distribu-
tion or consensus representation (Hao et al., 2021; Wen et al.
2021). However, in the clinical domain, patients who need to
be diagnosed might miss some omics measurements, hence we
design an indicator matrix G to demonstrate the data missing
situation, as follows:

G
ðvÞ
ij ¼

1; if i� th sample in X ðvÞ is the j� th sample in the intact data
0; otherwise

(

(3)

The consensus representation H shared by all omics can be
established by a weighted fusion manner:

hj ¼
PV

v¼1

PNv

i¼1 G
ðvÞ
ij z
ðvÞ
iPV

v¼1

PNv

i¼1 G
ðvÞ
ij

: (4)

2.2.3 Node attribute reconstruction

The original multi-omics data through encoder layers and fu-
sion operation is represented as H, which preserves the main
information in multi-omics measurements and the similarity
relationships in patients. Then in decoding, the node attribute
and graph structures need to be reconstructed simultaneously
based on H. In attribute reconstruction, decoder attempts to
be a reverse of encoder, hence the layer number of decoder is
also set to be M. The attribute reconstruction is calculated as
follows:

Ẑ
ðvÞ
M ¼ u

�
HŴ

ðvÞ
M

�
; (5)

Ẑ
ðvÞ
m�1 ¼ u DðvÞ

�1
2
AðvÞ

0
DðvÞ

�1
2
Ẑ
ðvÞ
m Ŵ

ðvÞ
m�1

� �
: (6)

The loss of node attribute reconstruction is defined as:

Lnar ¼
PV

v¼1 jjX ðvÞ � X̂
ðvÞjj2F (7)

where X̂
ðvÞ

is the output of decoder last layer, i.e. Ẑ
ðvÞ
0 . Ŵ

ðvÞ
m

are the decoder model parameters.

Figure 1 The framework of MRGCN model. (a) Individual encoder is used to learn embedding from node attribute and graph relationship of each omics

data. (b) Consensus representation is used to integrate each embedding from each omics data into a shared space and meanwhile to handle the partial

sample missing problem. (c) Graph structure reconstruction is used to reconstruct the similarity relationship of each omics data. (d) Node attribute

reconstruction is used to reconstruct omics expression.
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2.2.4 Graph structure reconstruction

The reconstructed similarity graph Â
ðvÞ

of each omics data
can be presented as follows:

Â
ðvÞ ¼ u

�
H ~W

ðvÞ
HT
�

(8)

where ~W
ðvÞ

is the model parameters determined by training
for reconstructing the graph Â

ðvÞ
. Correspondingly, the loss of

graph structure reconstruction can be written as:

Lgsr ¼
PV

v¼1 jjA
ðvÞ � Â

ðvÞjj2F� (9)

2.3 Clustering for cancer subtyping

The cancer subtyping is achieved by spectral clustering
method, and the clustering results in turn help to enhance the
discriminability of consensus representation via self-
supervised learning mechanism.

2.3.1 Self-supervised learning mechanism

Self-supervised is a type of unsupervised learning methodol-
ogy, in which the model parameters are trained with supervi-
sory information generated from the data itself (Liu et al.
2022). Specifically, during training phase, some pseudo labels
are generated based on attributes of data and clustering algo-
rithm. Then the model is trained via supervised learning man-
ner by using these pseudo labels as supervised information.
Finally, update pseudo labels and retrain the model to fine
tune parameters. The loss function of self-supervised learning
in MRGCN is defined as follows:

Lss ¼ KLðPjjQÞ ¼
PN

i¼1

PC
j¼1 Pij log

Pij

Qij
(10)

where C is the number of clusters. KLð�jj�Þ is Kullback–
Leibler divergence that measures the distance between two
distributions. Q is the distribution of the soft labels, in which
Qij is measured by Student’s t-distribution (Van der Maaten
and Hinton 2008) for indicating the similarity between the
consensus representation hi and cluster center lj:

Qij ¼
ð1þ jjhi � ljjj

2Þ�1PC
j0¼1 ð1þ jjhi � lj0 jj

2Þ�1
(11)

Pij in Equation (10) is the target distribution of Q, defined as:

Pij ¼
Q2

ij

PN
i¼1 QijPC

j0¼1ðQ
2
ij0=
PN

i¼1 Qij0 Þ
: (12)

Minimizing KL divergence between Q and P makes the dis-
tribution of Q denser, which is particularly beneficial to en-
hance the discriminative ability of consensus representation.

2.3.2 The overall loss function of MRGCN

MRGCN attempts to obtain embedding results for improving
the clustering performance via preserving the information in
data attribute and similarity relationship among samples.
Therefore, the overall loss function of MRGCN then reads:

L ¼ Lnar þ aLgsr þ bLss: (13)

where a and b are trade-off parameters.

2.3.3 Spectral clustering

A similarity matrix S of consensus representation H is
constructed:

Sij ¼ exp ð�jjhi � hjjj22=tÞ; if hi 2 NeiðhjÞ or hj 2 NeiðhiÞ;
0; otherwise ;

(

(14)

where t> 0 is a tuning parameter. The diagonal matrix D and
the Laplacian matrix L are constructed as follows:

L ¼ I �D�1=2SD�1=2;Dii ¼
P

ij Sij: (15)

The clustering results can be determined by solving the opti-
mization problem (Liu et al. 2018) as follows:

minBTraceðBTLBÞ;
s:t:BTB ¼ I;

(16)

where I is the identity matrix, B ¼ YðYTYÞ�1=2; Y ¼
½yT

1 ; y
T
2 ; . . . ; yT

N�
T . yi is the clustering results, i.e. yiðkÞ ¼ 1

denotes that i th patient should related to the kth cancer sub-
type. The number of clusters is determined by the modified
eigengap method(Von Luxburg 2007). That is, test each value
in the range [2,15] in increments of 1, and set the number of
clusters to i, which could reach the arg maxiðkiþ1 � kiÞi, where
ki is the ith eigenvalue of matrix L.

The training process consists of two parts. The first one is
the pre-training, in which self-supervised learning mechanism
is omitted, and only uses Lnar þ aLgsr in training. The second
part is fine-tuning, in which spectral clustering is carried out
on the consensus representation results obtained from pre-
training and then the complete loss function, i.e. Equation
(13) is used to train the model. Furthermore, in fine-tuning,
the model parameters are initialized to the results of pre-
training. The back propagation algorithm with stochastic gra-
dient descent is used in all training. The detailed procedure is
summarized in Algorithm1.

Algorithm 1 The MRGCN algorithm.

Input: Multi-level data X .
Output: Consensus representation H and clustering results Y.

1: Construct a graph for each omics data by Equation (1).

2: Construct matrix GðvÞ by Equation (3).

3: Pre-train using loss function L ¼ Lnar þ aLgsr.

4: Calculate clustering results by Equations (14)–(16).

5: Repeat.

6: Fine-tune using loss function Equation (13).

7: Calculate clustering results by Equations (14)–(16).

8: Until convergence.

9: Return H and Y.
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2.4 Materials

Ten cancer types data from TCGA are used for evaluation, in-
cluding acute myeloid leukemia (AML), breast invasive carci-
noma (BIC), colon adenocarcinoma (COAD), glioblastoma
multiforme (GBM), kidney renal clear cell carcinoma (KIRC),
liver hepatocellular carcinoma (LIHC), lung squamous cell
carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV),
skin cutaneous melanoma (SKCM), and sarcoma (SARC).
Three omics levels are adopted for integration, including
DNA methylation, mRNA and miRNA expression. In addi-
tion, the Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) breast cancer dataset (Pereira et al.
2016) is also used for integrating mRNA and CNV expres-
sion. All data are preprocessed following (Rappoport and
Shamir 2018, 2019), and the detail of datasets is summarized
in Supplementary Table S1.

3 Results

The proposed method MRGCN is compared with 11 integra-
tive methods on full datasets and 3 related methods on partial
datasets, respectively.

3.1 Full multi-omics datasets

Several computational experiments were performed to evalu-
ate the effectiveness of cancer subtyping via multi-omics data.
We compare our MRGCN to 11 methods on full multi-omics
datasets, including two directly clustering methods, i.e.
K-means and spectral clustering, which conduct clustering op-
eration on the concatenated multi-omics data, as well as nine
integrating methods, i.e. LRAcluster, CC, PINS, MCCA,
iClusterBayes, SNF, SNFCC, MSNE, and NEMO. The sur-
vival analysis and enrichment analysis of clinical labels are
utilized to assess the performance of subtyping (Rappoport
and Shamir 2019). For survival analysis, Cox proportional
hazards model (Hosmer et al. 1999) and P-value are selected
to indicate statistically significant difference existence in sur-
vival profiles between different cancer subtypes. For enrich-
ment analysis of clinical labels, a unified set of patients’
clinical information is selected for all cancers, such as gender
and age at initial diagnosis, as well as four discrete clinical
pathological parameters quantifying the progression of the tu-
mor (pathologic T), cancer in lymph nodes (pathologic N),
metastases (pathologic M), and total progression (pathologic
stage). The number of clusters within comparison methods is
set to be the same value reported in the original papers, as
suggested by Rappoport and Shamir (2019), details shown in
Supplementary Table S2.

Competitive methods are realized using the publicly avail-
able code. The details of hyper-parameters in codes are de-
scribed in Supplementary Table S3. The silhouette value is
adopted as a criterion for parameters selection for each
method. In MRGCN training, the learning rate is set to
0.001. For simplicity, the parameters a and b are both set to
1. If the lowest dimension in each omics expression for given
dataset is <2000, the dimension of consensus representation
d is set to be 0:8� the lowest dimension, and otherwise set to
be 1600, details shown in Supplementary Table S4. The num-
ber of nodes in each layer of MRGCN is displayed in
Supplementary Tables S5 and S6. After the input features
have been determined, normalized z-score (Cheadle et al.
2003) is used to achieve normalization. The training time of
different methods is show in Supplementary Fig. S1. Since our

method MRGCN is based on deep learning, it requires more
time to train neural networks. However, compared with
iClusterBayes and CC, the time consumption of MRGCN is
still acceptable.

Table 1, Fig. 2, and Supplementary Table S7 summarize the
cancer subtyping performance of different algorithms on 10
full TCGA datasets and one METABRIC dataset. It is clearly
observed that the clusters found by MRGCN with significant
difference in survival for 9 of the 11 cancer datasets. The aver-
age logrank P-value of MRGCN reaches to 3.0. iClusterBayes
is the second with 2.9. None of the methods found clusters
with significantly different survival for COAD and OV data-
sets. MRGCN found at least one enriched clinical parameter
in all datasets. LRAcluster, CC, iClusterBayes, SNF, SNFCC
and MSNE are tied for second with 10. Furthermore, the av-
erage number of enriched clinical parameters of MRGCN is
2.0, while LRAcluster is the second with 1.7. These results
demonstrate MRGCN could identify significant coherent and
clinically relevant patient subtypes.

The visualization of the consensus representation from
MRGCN on BIC dataset by t-SNE and UMAP is shown in
Supplementary Fig. S2. From the figure, we clearly see that
the proposed MRGCN has good discriminant capability,
since the intra-cluster compactness and the inter-cluster sepa-
ration are achieved at the same time. Supplementary Fig. S3
shows the survival curves of the patients in the subtypes iden-
tified by each method on BIC. From the figure, we can see
that MRGCN has significantly lower P-values than other
comparison methods, which indicates the MRGCN is better
than the other existing methods.

In order to compare the subtypes obtained by MRGCN
and the existing subtypes, meanwhile to display the differen-
tial expression among different subtypes, we designed the
experiments with following processes. First, subtyping results
of PAM50 classification (Parker et al. 2009) on BIC dataset
are selected for comparison. Second, for MRGCN on BIC
dataset, we found that there are 48 features in mRNA expres-
sion related to the 50 genes of PAM50, and then delete the 48
features in mRNA expression, with the aim of eliminating di-
rect effects of the 50 known oncogenes in multi-omics integra-
tion. Third, the processed mRNA data together with anther
omics data are input to MRGCN model. Finally, the expres-
sions of 48 mRNA are used to draw heatmap for showing the
correlation of oncogenes with the obtained subtypes from
MRGCN, as well as the overlap of subtypes from MRGCN
and PAM50 classification. Supplementary Fig. S4 shows the
heatmap results, in which samples are rearranged by subtypes
from MRGCN. It could be observed that different subtypes
have distinct expression patterns and there are some overlap
subtypes between MRGCN and PAM50, especially Basal and
our subtype 2. Furthermore, in order to compare the perfor-
mance on pathway activity between different subtypes, the en-
richment analysis performed on the mRNA expression of BIC
is shown in Supplementary Fig. S5.

Supplementary Figs S6–S11 and Table S8 show the results
of sensitivity analysis that how the performance varies with
parameters a and b. Their values are selected from
f0:2; 0:5;1;5; 10g. From these figures, we can observe that
the MRGCN is robust with respect to trade-off parameters of
loss function, hence, for simplicity, a and b could be always
set to 1. In addition, Supplementary Figs S12 and S13 display
subtyping results in different dimensions of the consensus rep-
resentation. It also can be found that MRGCN is relatively
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robust with respect to the dimension of consensus
representation.

The generalization capability of the proposed method is
carried out in 2-fold validation study. The first fold is on BIC
and METABRIC datasets. METABRIC has two omics, but
BIC has three omics. The overlapped expression between
them is only mRNA. Thus, the four clusters of BIC are al-
ready obtained via the proposed MRGCN trained on three
omics. Then, each sample of METABRIC is classified into the
four clusters of BIC using shrunken centroid classifier
(Tibshirani et al. 2002) via mRNA profiles of METABRIC
and the cluster centroids of BIC. Supplementary Fig. 14a and
b shows the sample distributions and PAM50þClaudin-low
subtype compositions of the identified clusters.
Supplementary Fig. 14 (c) shows the In-Group Proportion
(Kapp and Tibshirani 2007) score and P-value for each cluster
of METABRIC. In the second fold, in order to guarantee the
training and validation data have the same multi-omics, we
randomly set aside 80% of BIC data for training, 20% for
validation. The experimental procedures follow the first fold
study, and its results are shown in Supplementary Fig. 15. It
can be observed from these figures that identified clusters

could be reproduced and the proposed method has good gen-
eralization capability on independent datasets.

3.2 Partial multi-omics datasets

In order to evaluate the performance of methods on partial
multi-omics datasets, we simulate some patients loss omics
measurements. Specifically, we randomly sampled a fraction h
of the patients and removed their mRNA expression.
Consequently, for TCGA datasets miRNA and DNA methyla-
tion expression are full, and for METABRIC dataset CNV ex-
pression is full. The survival analysis and enrichment of
clinical labels are still adopted to evaluate the quality of meth-
ods. The performance is presented in Table 2 and Fig. 3.
Table and figure reveal that MRGCN gives a better perfor-
mance than MSNE, NEMO, and MCCA with respect to sur-
vival and enrichment analysis under all missing rates. These
results demonstrates that MRGCN is robustly applied to par-
tial omics missing situation. Generally, cancer subtyping via
MRGCN with statistically significant difference in survival
profiles and significant clinical enrichment. In addition,
MRGCN can effectively tackle the partial omics missing
challenge.

4 Discussion and conclusion

Cancer subtyping plays an important role in targeted treat-
ment and precision medicine, and ultimately helps to increase
survival chances of cancer patients. Cancer is a phenotypic
end-point of event accumulated by multiple levels of biologi-
cal system from genome to proteome. Multi-omics data inte-
gration can improve understanding of underlying biological
mechanisms and improves clinical outcome. An effective can-
cer subtyping framework, namely MRGCN is presented for
multi-omics integration and clustering. Different from existing
integrative approaches, MRGCN aims at preserving omics ex-
pression and similarity relationships simultaneously. Also,
MRGCN aims to deal with the tackle of some samples miss-
ing values on partial omics. To solve these problems effi-
ciently, the reconstruction GCN and indicator matrix are
designed and applied. Based on 10 TCGA and 1 METABRIC
multi-omics datasets, computational experimental results in-
dicate that MRGCN can provide better integrative perfor-
mance. Although two or three levels omics are used in
experiments, MRGCN is an open framework and could easily

Table 1. The comparisons of clustering results from different algorithms on full TCGA and METABRIC datasets.a

Alg./cancer AML BIC COAD GBM KIRC LIHC LUSC OV SKCM SARC METABRIC Mean Sig

K-means 1/2.4 (5) 2/3.5 (4) 1/0.4 (2) 2/2.6 (5) 1/0.8 (2) 2/0.2 (2) 0/1.5 (2) 1/0.3 (2) 2/0.9 (2) 2/1.3 (2) 0/1.2 (5) 1.3/1.4 9/4
Spectral 1/2.4 (6) 1/5.4 (3) 1/0.9 (12) 2/2.6 (5) 3/1.5 (3) 2/0.4 (2) 0/2.1 (2) 1/0.8 (4) 2/1.4 (6) 2/1.3 (2) 0/3.5 (7) 1.4/2.0 9/7
LRAcluster 1/1.8 (7) 2/5.6 (5) 1/0.8 (10) 2/1.3 (12) 4/1.3 (11) 2/2.4 (12) 1/1.0 (12) 1/0.4 (4) 3/2.9 (15) 2/2.5 (13) 0/2.7 (7) 1.7/2.1 10/6
CC 1/3.8 (3) 1/2.8 (5) 1/0.5 (2) 2/2.1 (7) 3/1.3 (4) 2/0.5 (2) 1/1.1 (4) 0/0.2 (3) 3/2.5 (4) 2/1.0 (2) 1/1.0 (6) 1.5/1.5 10/4
PINS 1/2.0 (4) 1/4.1 (5) 0/0.5 (4) 1/4.4 (2) 3/1.7 (6) 2/0.8 (5) 0/2.0 (2) 0/0.1 (2) 2/1.0 (15) 2/0.8 (3) 1/1.8 (7) 1.2/1.7 8/6
MCCA 1/2.1 (12) 1/8.0 (5) 0/0.3 (2) 1/2.9 (11) 2/1.8 (15) 2/1.2 (15) 2/2.3 (12) 0/0.6 (9) 2/4.7 (2) 2/1.5 (15) 1/5.7 (7) 1.3/2.8 9/8
iClusterBayes 1/2.0 (5) 2/3.2 (4) 2/0.1 (2) 1/3.1 (2) 4/7.3 (2) 2/3.3 (6) 0/1.6 (5) 1/1.0 (6) 2/0.6 (2) 2/3.7 (2) 1/5.7 (7) 1.6/2.9 10/8
SNF 1/3.2 (6) 2/6.3 (5) 1/0.5 (3) 2/2.6 (2) 3/1.7 (4) 2/1.1 (5) 1/1.5 (2) 1/0.6 (3) 1/1.1 (3) 2/1.9 (3) 0/2.6 (7) 1.5/2.1 10/7
SNFCC 1/4.0 (4) 3/7.5 (5) 2/0.6 (10) 2/2.3 (9) 2/1.5 (2) 1/1.2 (10) 1/1.7 (2) 0/0.5 (3) 2/1.3 (4) 2/1.7 (3) 1/2.7 (7) 1.5/2.3 10/7
MSNE 1/3.2 (5) 2/3.8 (4) 1/0.3 (5) 1/3.0 (2) 2/1.5 (4) 3/1.2 (5) 1/1.5 (2) 0/0.5 (4) 2/2.0 (4) 2/1.8 (3) 1/2.7 (9) 1.5/2.0 10/8
NEMO 1/1.8 (5) 2/4.2 (4) 0/0.1 (3) 1/3.8 (4) 4/2.2 (12) 4/4.2 (5) 0/1.8 (2) 0/0.4 (3) 3/4.0 (5) 2/1.9 (3) 1/3.5 (9) 1.6/2.5 8/9
MRGCN 1/3.0 (10) 4/6.7 (4) 1/0.6 (7) 2/3.8 (8) 4/2.4 (9) 2/1.7 (10) 1/1.5 (13) 1/0.8 (5) 3/4.5 (5) 2/3.3 (8) 1/5.2 (9) 2.0/3.0 11/9

a In each cell A/B (C), A is significant clinical parameters detected. B is �log10 P-value for survival. C is the number of clusters. 0.05 is the threshold for
significance and the bold indicates the significant results. Mean is algorithm average value. Sig is the number of datasets with significant results.

Figure 2 Mean performance of the different algorithms on 11 cancer

datasets. Y-axis represents average �log10 logrank test’s P-values and X-

axis represents average number of enriched clinical parameters in the

clusters. The red dotted lines highlight the results of MRGCN.
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be utilized in more omics scenarios. We believe that MRGCN
will ultimately lay the foundations for refined representation
and understanding of diseases. Another important future
work is to involve protein–protein interaction networks to im-
prove the interpretability of integrative embedding.
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