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Abstract

Motivation: Precise prediction of cancer subtypes is of significant importance in cancer diagnosis and treatment.
Disease etiology is complicated existing at different omics levels; hence integrative analysis provides a very effective
way to improve our understanding of cancer.

Results: We propose a novel computational framework, named Deep Subspace Mutual Learning (DSML). DSML
has the capability to simultaneously learn the subspace structures in each available omics data and in overall multi-
omics data by adopting deep neural networks, which thereby facilitates the subtype’s prediction via clustering on
multi-level, single-level and partial-level omics data. Extensive experiments are performed in five different cancers
on three levels of omics data from The Cancer Genome Atlas. The experimental analysis demonstrates that DSML
delivers comparable or even better results than many state-of-the-art integrative methods.

Availability and implementation: An implementation and documentation of the DSML is publicly available at https://
github.com/polytechnicXTT/Deep-Subspace-Mutual-Learning.git.

Contact: yangboo@stu.xjtu.edu.cn

1 Introduction

In the past, cancer was considered to be a single type of disease, and
diagnosed conventionally via the morphological appearance of
tumor. This strategy conducts serious limitations that some tumors
share similar histopathological appearance, but they have significant
different clinical manifestations and represent different outcome of
therapy. Nowadays, increasing evidence from modern transcrip-
tomic studies has supported the assumption that each specific cancer
is composed of multiple subtypes, which refers to groups of patients
with corresponding biological features or a correlation in a clinical
outcome, e.g. response to treatment or survival time (Heiser et al.,
2012; Jahid et al., 2014; Prat et al., 2010). The cancer subtypes pre-
diction has been the crux of cancer treatment, since it could induce
target-specific therapies for different subtypes and help in providing
more efficient treatment and minimizing toxicity on the patients.
Furthermore, cancer subtypes prediction may accelerate our under-
standing of cancer evolution, the advancement of patient stratifica-
tion and the pace of design new effective therapeutic methods
(Alizadeh et al., 2015; Bailey et al., 2016).

Usually, a suitable prediction of any disease has to be scientific-
ally sound, clinically useful, easily applicable and widely reprodu-
cible (Viale, 2012). The cancer subtype prediction usually involves
two stages: subtypes discovery and subtypes classification (Collisson
et al., 2019). The discovery refers to the detection of previously

unknown subtypes (Mo et al., 2013). The pattern discovery of
cancer subtypes is still a challenging open problem, since different
conclusions of cancer subtypes number have been drawn by using
different research methodologies and data sources. For instance,
glioblastoma multiforme (GBM) is estimated as two subtypes
(Nigro et al., 2005), three subtypes (Wang et al., 2014), four sub-
types (Sanai, 2010) and six subtypes (Speicher and Pfeifer, 2015) in
different works of literature, respectively. In contrast, classification
refers to the assignment of specific samples to already-defined sub-
types (Bailey et al., 2016). This task can be achieved via supervised
learning methodology. The cancer data could be obtained only from
a sample with clinical follow-up, which is a laborious and time-
consuming procedure. However, supervised learning does not seem
to cherish the data, since it only employs labeled data while disre-
gards unlabeled data in training. Whereas, clustering-based methods
do not need or have the luxury of known types as training set, thus
they are widely used for taking full advantage of unlabeled data
(Gao and Church, 2005).

High-throughput experimental technologies have provided a
large amount of omics data, which enables the development of ana-
lysis genomic patterns of cancers and prediction cancer subtypes at
molecular levels. Usually, gene expression alterations regulate the
growth and differentiation of cells, which are major components
in transforming normal cell to cancer cell (Croce, 2008). As the
molecular complexity of cancer etiology exists at all different levels,
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there have been some attempts at cancer prediction using omics
measurements at different levels, including mRNA, miRNA and
DNA methylation (Beroukhim et al., 2010; Davis-Dusenbery and
Hata, 2010; Lu et al., 2005; Noushmehr et al., 2010; Wood et al.,
2007) . The cancer development and progression are influenced by
molecular mechanisms spanning through different molecular layers
(Chin and Gray, 2008; Hanash, 2004), hence a recent growing trend
in cancer subtypes prediction is to integrate individual omics data
for capturing the interplay of molecules (Ritchie et al., 2015; Wang
et al., 2014). It helps to assess the flow of information from one
omics level to the other and to bridge distance from genotype to
phenotype. Some large national and international consortia, such as
The Cancer Genome Atlas (TCGA) and International Cancer
Genome Consortium, have collected abundance of biological sam-
ples assaying multi-level molecular profiles. A large amount of data
provides more detailed information to characterize different sub-
types, and to study the biological phenomenon holistically.
Meanwhile, it poses great challenges for integrative analysis (Shen
et al., 2009; Zhang et al., 2012).

Many appealing methods of multi-level omics integration have
been widely exploited and proposed. Akavia et al. (2010) adopted
Bayesian network to identify mutations drivers. Lanckriet et al.
(2004) proposed a kernel-based algorithm to integrate heteroge-
neous descriptions of omics data straightforwardly. Kim et al.
(2012) predicted clinical outcomes in brain and ovarian cancers via
a graph-based algorithm. Shen et al. (2009) proposed iCluster algo-
rithm to discover potentially novel subtypes via analysis variance–
covariance structure. Wang et al. (2014) proposed a network based
algorithm, i.e. Similarity Network Fusion (SNF), to aggregate differ-
ent genomic data types. Liu and Shang (2018) designed a hierarchic-
al fusion framework to use diverse similarity networks generated by
multiple random sampling. Nguyen et al. (2017) proposed a radical-
ly integrative approach, Perturbation clustering for data INtegration
and disease Subtyping (PINS), which constructs connectivity matri-
ces for describing the co-clustering of samples in a same omics level
and integrates these matrices. Wu et al. (2015) designed a Low-
Rank Approximation based multi-omics data clustering
(LRAcluster) model to share principal subspace across multiple data
types. Rappoport and Shamir (2019) proposed a NEighborhood
based Multi-Omics clustering (NEMO) method, which constructs
similarity matrix for each omics level and calculates average similar-
ity matrix for overall omics data.

Most integrative analyses holistically using multiple data levels
could be more powerful than individual analyses independently
using a single data level. However, that integrative analyses are car-
ried out successfully should be based on the premise that each level
data needed for fusion is available and complete. These precondi-
tions restrict the applicability in clinical practice. In modeling pre-
diction, the training data can be obtained from public database
resources, which contain various levels of genomic data. Whereas
patients who need to be diagnosed might lack some levels of genom-
ic data used in the model training. This fact may lead to the trained
holistic model becoming unavailable. From a machine-learning per-
spective, the integrative analysis corresponds to multi-view learning.
Some level data missing can be described as the phenomenon that
the number of views in training process is more than the number of
views in test process. In order to fully utilize the complementary in-
formation contained in the different level omics data, we introduce
the mutual learning mechanism (Zhang et al., 2018) for improving
the performance not only on integrative analyses, but also on the in-
dividual and partial data analyses.

Subspace learning aims at finding out some underlying subspaces
to fit different groups of data points, which has attracted consider-
able attention in computer vision and machine learning (Lerman
and Maunu, 2018; Peng et al., 2018, 2020). In biological research
field, there have been some attempts using subspace learning to deal
with clustering problem (Liu et al., 2018; Zheng et al., 2019).
Besides, mutual learning is recently proposed as a novel machine-
learning paradigm by constructing a pool of students who simultan-
eously learn to solve the task together. Specifically, students are
trained for a two-part aim: independent learning objective of each

student itself and consistent learning objective of all students
together. Wu et al. (2019a) proposed a complementary correction
network to capture the complementary information to enhance
learning performance. Kanaci et al. (2019) proposed a multi-task
mutual deep-learning model to learn features simultaneously from
different students and to achieve a consensus learning by fuzing
features from all students. Wu et al. (2019b) adopted the mutual
learning strategy to detect diverse features and fuze intertwined
multi-supervision. For multi-level omics data integrative analysis,
each student corresponds to the model learnt from each level data.
The independent learning objective of each student is to exact
discriminative features from given single-level data, while the
consistent learning objective of all students is clustering the patients.
This paradigm jointly trains multiple model branches specialized for
each single omics data and achieves the integration at the same time.

In this article, we propose the Deep Subspace Mutual Learning
(DSML) method to capture the subspace structures in each level of
omics data and in the entire fuzed data for cancer subtypes predic-
tion. In our integrative method, deep networks are constructed
including several branch models and a concentrating model. Firstly,
auto-encoder and data self-expressive layers are utilized in each
branch model to encode latent feature representations hidden in
each level data. Secondly, a concentration model is used to uncover
the global subspace structure in entire data. Finally, cancer subtypes
are predicted by spectral clustering based on the obtained global
subspace structure. A joint optimization problem supporting mutual
learning is proposed to achieve balanced emphases on each branch
and consensus losses. To our best knowledge, it is the first attempt
at using mutual learning in unsupervised scenario and bioinformat-
ics field. In addition, there have been no previous works simultan-
eously to enhance the prediction performance on multi-level omics
cancer data and single omics cancer data.

The experiments conducted on five public cancer datasets dem-
onstrate that DSML generally delivers comparable or even better
clustering results than other state-of-the-art algorithms. That is,
DSML can discover meaningful cancer subtypes from multi-level
omics data, meanwhile provide a prospective avenue for under-
standing cancer pathogenesis and promoting personalized cancer
treatment.

2 Materials and methods

DSML is mainly composed of calculating data representation via
DSML model and predicting cancer subtypes via spectral clustering
algorithm. We describe the details of each step in the following.

2.1 Data representation
2.1.1 Single-level omics data representation learning model

Conventional data representation techniques try to find a lower-
dimensional subspace for best fitting a collection of points sampled
from a high-dimensional space, which assumes that the data are
drawn from a single subspace. But in practice, much high-
dimensional data should often be modeled as samples drawn from
the union of multiple subspaces. Subspace clustering (Soltanolkotabi
et al., 2013; Wang and Xu, 2016) refers to the task of uncovering
the underlying structure of data and clustering the data into their in-
herent multiple subspaces. The mainstream strategy of subspace
clustering is to represent each data point by a linear or affine com-
bination of remaining data points with sparse constraints, i.e. data
linear self-expressiveness (Elhamifar and Vidal, 2013).

Suppose X ¼ ½x1; x2; . . . ; xN � 2 R
D�N is a collection of N data

samples with dimension D. In order to separate samples into their
respective subspaces, each data xi can be expressed as a self-
representation manner:

xi ¼ Xci; cii ¼ 0; (1)

where i ¼ 1; 2; . . . ;N; ci ¼ ½ci1; ci2; . . . ; ciN �T 2 R
N is the self-

representation coefficient and the constraint cii ¼ 0 rules out the
trivial solution of representing a point as a linear combination of
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itself. In order to obtain the unique solution, Equation (1) can be
formulated as the following optimization problem:

min
ci

kcikq

s:t: xi ¼ Xci; cii ¼ 0;
(2)

where q controls the sparsity of the solution. Equation (2) can be
written in a compact matrix form:

min
C
kCkq

s:t: X ¼ XC; diagðCÞ ¼ 0;
(3)

where C ¼ ½c1; c2; . . . ; cN� 2 R
N�N. Equality constraints in Equation

(3) can be relaxed as a regularization term, then, it is transformed
to be:

min
C
kCkq þ

k
2
kX � XCk2

F

s:t: diagðCÞ ¼ 0;
(4)

where k:k2
F is the Frobenius norm. Equations (3) and (4) are matrix-

based optimization problems, hence they can only reflect
self-expressive property in linear subspaces. Although kernel-based
subspace methods (Patel and Vidal, 2014; Xiao et al., 2016; Yin
et al., 2016) strive to deal with non-linear situations, the selection
and design of kernel function still lack clear physical meaning and
theoretical direction. Therefore, we adopt Deep Subspace Clustering
Networks (DSCN) (Ji et al., 2017) to achieve non-linear
self-expressive. The model structure of DSCN is illustrated in
Figure 1. DSCN contains several convolutional encoder layers, one
self-expressive layer and some de-convolutional decoder layers. The
subspace discovery is achieved by solving the following optimization
problem:

min
Z;C

1

2
kX � X̂k2

F þ k1kCkq þ
k2

2
kZ� ZCk2

F

s:t: diagðCÞ ¼ 0;
(5)

where X̂ denotes the data reconstructed by overall networks and Z
denotes the output of the encoder. C represents self-expressive layer
parameters. k1 and k2 are the trade-off parameters. Minimizing the
first term in Equation (5), which measures the average reconstruc-
tion loss over all data can control the information loss during data
representation. The second and third terms in Equation (5) corres-
pond to the optimization objective of Equation (4).

The stacked convolutional auto-encoder (Du et al., 2017; Masci
et al., 2011) structures are selected for reflecting the interactions be-
tween genes indirectly. The Rectified Linear Unit (Krizhevsky et al.,
2012) is adopted as non-linear activation function in convolutional
layers. The nodes in self-expressive layer are connected fully by lin-
ear weights, i.e. C, without bias and non-linear activations. The in-
put data of self-expressive layer is the output of the encoder layers
involving non-linear activation function. Hence, although only lin-
ear connections are used in self-expressive layer, the whole networks
will still achieve the non-linear self-expressive of data. The weight
between two corresponding points in self-expressive layer should be
set to zero, i.e. constraint diagðCÞ ¼ 0 in Equations (4) and (5),
denoted as red dashed lines in Figure 1.

2.1.2 Multi-level omics data representation learning model

X ¼ fX ð1Þ;X ð2Þ; . . . ;XðVÞg denotes a set of multi-view samples,
where each view corresponds to one level omics data. X ðvÞ ¼ ½xðvÞ1 ;
x
ðvÞ
2 ; . . . ;x

ðvÞ
N � 2 R

Dv�N is the data of the vth view, where
v ¼ 1;2; . . . ;V, V and Dv being the number of views and data
dimensionality from the vth view, respectively. The architecture of
the proposed DSML is illustrated in Figure 2. It jointly learns latent
individual representation and similarity for each single view by
branch parts as well as holistic representation and similarity for
across multiple views by concentration main-stem part. It can be
seen from the figure that the branch and main-stem parts are com-
posed of varieties of DSCN. Specifically, the intrinsic representation
of each view is automatically extracted via the specific-view encod-
ing; meanwhile, the similarity of intra-view data is achieved via
specific-view self-expressiveness. In other words, a branch, i.e.
DSCN, is constructed for each view data. Then, extracted represen-
tation from each view are integrated into the form of series connec-
tion and input to the main-stem part. Obviously, the intact
representation and similarity of data from all views are concentrated
and learnt by multi-view encoding and multi-view self-expressive-
ness parts in Figure 2, respectively. This joint optimization problem
can be formulated as follows:

min
ZðvÞ;ZðMÞ;CðvÞ ;CðMÞ

�XV

v¼1

kXðvÞ � X̂
ðvÞk2

F þ kX ðMÞ � X̂
ðMÞk2

F

�

þk1

�XV

v¼1

kCðvÞk2
F þ kCðMÞk

2
F

�

þk2

�XV

v¼1

kZðvÞ � ZðvÞCðvÞk2
F þ kZðMÞ � ZðMÞCðMÞk2

F

�

s:t: diagðCðvÞÞ ¼ 0; diagðCðMÞÞ ¼ 0:

(6)

Each notation in Equation (6) has a similar meaning to Equation
(5). However, in the context of multi-view, V denotes the branches
for V individual level omics data and M denotes the main-stem for
integrated data. That is, XðMÞ ¼ ½Zð1ÞT ;Zð2ÞT ; . . . ;ZðVÞT �T , where
ZðvÞ is output of encoder in vth branch, i.e. the extracted feature of
vth level omics data. The notation T denotes the transpose of a vec-
tor or a matrix.

The networks with the structure of branches and main-stem
incorporating joint optimization in its design can realize mutual
learning. The branches can be seen as the students’ pool. The inde-
pendent learning aim of each branch is to obtain the individual rep-
resentation and similarity in each omics data, while consistent
learning aim of main-stem is to get the similarity in overall level
omics data. DSML is a kind of feed forward neural networks, hence
the representation of each omics data, i.e. ZðvÞ, can effect on the con-
nection weights within main-stem part. DSML is optimized through
back propagation strategy, hence the learning of main-stem part in
turn effects on the ZðvÞ of each branch. Furthermore, the representa-
tion ZðvÞ also influences on the similarity relationship, i.e. self-
expressive weights CðvÞ. Eventually, the mutual learning is carried
out among specific-view encoding and self-expressiveness as well as
multi-view encoding and self-expressiveness. Consequently, all of
them will be improved in training process. Besides, each branch in
trained DSML can be employed as an independent model for uncov-
ering the representation and similarity on single-level data. Since
multi-level omics data are involved in training, each trained branch
has contained the complementary information from other level data.
In practice, even if the patients only have one level of data in test,
the prediction made by trained branches can also achieve satisfac-
tory results.Training the proposed model involves pre-training and
fine-tuning two processes for branch parts, main-stem part and over-
all networks, respectively. In the pre-training stage, only auto-
encoder without self-expressive structure is utilized. The weights of
networks are obtained by using Restricted Boltzmann Machines and
back propagation algorithm with stochastic gradient descent on
mini-batches. In the fine-tuning stage, the encoder and decoder
layers are initialized by the weights got from the pre-training stage.
The weights of self-expressive layer are learnt by corresponding loss
function with back propagation algorithm. Since C represents self-

... ... ... . ..

encoder decoderX
Z ZC

X̂

C

Fig. 1. Structure of DSCN
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expressive layer parameters and cii ¼ 0, the weights between two
corresponding points in the self-expressive layer should be set to
zero and not change any more in updates, shown as the red dashed
lines in Figures 1 and 2. Additionally, in fine-tuning all the data
should be used as a single big batch, as each node in self-expressive
layer denotes a data sample and all the data should be involved for
updating the weights of networks. The detailed training procedure is
described in Algorithm 1.

2.1.3 DSML for partial-level omics data

DSML incorporates the mutual learning mechanism, such that it can
handle datasets where only a subset of the omics was measured for
some samples, i.e. partial-level omics data. As shown in Figure 2,
each branch aims to learn the representation and similarity of data
from each omics level, and the main-stem controls the consensus
learning by fuzing representation from all branches. Consequently,
each branch can be seen as an independence model to deal with sin-
gle omics level data. In clinical applications, even though the patient
who needs to be diagnosed only has single omics level data, the cor-
responding branch within DSML could still achieve satisfactory pre-
diction results, since this branch model has already involved
information from other omics in training stage via mutual learning.
Moreover, if the data of ith patient has several omics but lost vth
omics, we could set x

ðvÞ
i equals to the all-zero vector and input it

...

...

...

...

...

decoderV

...

... . ..

encoderM decoderM

encoderV

decoder2

encoder2

encoder1

decoder1
Z(1)C(1)

C(1)

X(2)

Z(1)

Z(2)

C(2)

Z(2)C(2)

Z(V)

C(V)

Z(V)C(V)

X(V)

X(M)

Z(M) Z(M)C(M)

C(M)

Specific-view
 encoding & decoding

Multi-view
 encoding

Specific-view
 self-expressiveness

Multi-view 
 self-expressiveness

Branches Main-stem

X(V)ˆ

X(2)ˆ

X(1)ˆ

X(1) X(M)ˆ

...

... ...

Fig. 2. Overview of DSML. DSML is composed of several branches (pink, orange and green standing for different views) to achieve specific-view encoding and specific-view

self-expressiveness, and a concentrated main-stem (shown with blue) to realize multi-view encoding and multi-view self-expressiveness. Specific-view encoding extracts

latent feature representations automatically from each view and specific-view self-expressiveness uncovers the intra-view similarity. Accordingly, the holistic representations

from different views are connected and integrated via multi-view encoding. The holistic similarity leant from multi-view self-expressiveness could be used for subsequent

clustering task

Algorithm 1 The DSML training algorithm.

Input: Multi-level data X , trade-off parameters k1 and k2.

Output: Self-expressive weights CðvÞ; CðMÞ; v ¼ 1; 2; . . . ;V.

1: Construct and train auto-encoder networks AðvÞ for vth

level data by minimizing reconstruction error

kX ðvÞ � X̂
ðvÞk2

F.

2: Initialize specific-view encoding and decoding parts with

AðvÞ for each level data.

3: Learn specific-view self-expressive weights and fine-tune all

branches by Equation (5).

4: Connect representation ZðvÞ from each branch to form in-

put data X ðMÞ of main-stem part.

5: Construct and train auto-encoder networks AðMÞ by mini-

mizing reconstruction error kXðMÞ � X̂
ðMÞk2

F.

6: Initialize multi-view encoding and decoding with AðMÞ.
7: Learn and fine-tune self-expressive weights in main-stem

by Equation (5).

8: Fine-tune overall DSML networks by Equation (6).

9: return CðvÞ; CðMÞ
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directly to the complete DSML model. This lost omics data would
not produce a noticeable effect on the representation of overall data
fusion. DSML thereby automatically omits the lost omics data and
utilizes the available partial-level omics data to predict the cancer
subtypes in a natural manner.

2.2 Spectral clustering
A similarity matrix S is constructed, where Sij ¼ 1

2

�
jCðMÞij j þ jC

ðMÞ
ji j
�

.
The corresponding diagonal matrix D and the Laplacian matrix L
are defined as follows:

L ¼ I �D�1=2SD�1=2;Dii ¼
X

ij

Sij: (7)

The spectral clustering (Ng et al., 2001) results can be deter-
mined by optimizing the following optimization problem,

min
B

TraceðBTLBÞ;
s:t: BTB ¼ I;

(8)

where I is identity matrix, B ¼ YðYTYÞ�1=2 and Y ¼ ½yT
1 ; y

T
2 ;

. . . ; yT
N �

T . yi shows the clustering results, e.g. yiðkÞ ¼ 1 indicates that
ith patient belongs to the kth cancer subtype.

2.3 Materials
In this article, five publicly available benchmark datasets from
TCGA have been used to validate the ability of different integrative
algorithms. These datasets are for the following cancer types: Breast
Invasive Carcinoma (BIC), COlon ADenocarcinoma (COAD),
GBM, Kidney Renal Clear Cell Carcinoma (KRCCC) and Lung
Squamous Cell Carcinoma (LSCC). Three levels omics data: mRNA
expression, miRNA expression and DNA methylation are used for
analysis each cancer type. All datasets used in this article prepro-
cessed as in Rappoport and Shamir (2018, 2019). The correspond-
ing codes can be downloaded from the NEMO website (http://acgt.
cs.tau.ac.il/nemo/). The number of patients ranges from 184 for
KRCCC to 621 for BIC.

3 Results

The proposed method DSML is compared to six multi-omics predic-
tion algorithms on five full multi-level cancer datasets, and then
compared to some methods on these cancer datasets with partial
level of data.

3.1 Full multi-level omics datasets
Several experiments were performed to demonstrate the effective-
ness of multi-level omics data integrating and clustering for cancer
subtypes prediction. We compare our DSML on each dataset to six
different methods. We select the classical method SNF, as well as
other relevant approaches, including Consensus Cluster (CC) and
SNF.CC, which are implemented via R packages Cancer Subtypes
(Xu et al., 2017). Moreover, we adopt some late integrative meth-
ods, such as PINS, LRAcluster and NEMO.

The survival curves of different clusters and performed enrich-
ment analysis on clinical labels are selected to assess the clustering
performance (Rappoport and Shamir, 2019). The P-value is adopted
for survival analysis. The logrank test of the Cox regression
(Hosmer and Lemeshow, 1999) model is used, in order to assess the
significance of the difference in survival profiles between subtypes.
The P-value represents that the observed difference in survival is
characterized by the possibility of accidental discovery. For enrich-
ment analysis, the same set of clinical information is adopted for
all cancers, including age at initial diagnosis, gender as well as four
discrete clinical pathological parameters, which quantify the
progression of the tumor (pathologic T), cancer in lymph nodes
(pathologic N), metastases (pathologic M) and total progression
(pathologic stage).

Different algorithms utilize their own individual strategies to es-
timate the number of clusters, and usually obtain different results.
To assess standard comparison purposes, we take the suggestion of
the number of clusters from Wang et al. (2014) for all methods in
experiments. Hence, the number of clusters is set to five for BIC,
three for COAD, three for GBM, three for KRCCC and four for
LSCC, respectively. The values of data features are normalized
between �1 and before training. We use the publicly available codes
of the competing methods and follow the conventional parameter
settings therein. For DSML, several values of each parameter are
tested, and the best one is selected by using silhouette value of the
clustering results. There is one convolutional layer in both the
encoding and decoding. The numbers of filter is set to 15 and the
filter size is set to 1�5. The learning rate is set to 0.001. We always
set the trade-off parameter k1 to one for simplicity, and pick k2 value
from a candidate set f20; 50; 100;150; 200; 250;350g. We finally
find that k2 ¼ 100 can achieve satisfying performance for most
cases.

Figure 3 and Table 1 demonstrate the prediction performance
of seven algorithms on cancer datasets. From the table and figure,
we observe that DSML discovers the clusters with significant differ-
ence in survival for four cancer types. DSML has an average logrank
P-value with 2.2, and the second method is SNF. CC with
2.0. Moreover the average number of enriched clinical parameters
of DSML is 2.0, while PINS and CC are tied for second with 1.8.
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Fig. 3. Mean performance of the different algorithms on five cancer datasets. Y-axis

represents average �log10 logrank test’s P-values and X-axis represents average

number of enriched clinical parameters in the clusters. The red dotted lines highlight

DSML’s performance

Table 1. Prediction performance comparison of integrative

algorithms on multi-omics cancer datasets

Alg./cancer BIC COAD GBM KRCCC LSCC Mean

SNF 2/1.7 1/0.3 1/3.2 2/1.0 1/1.3 1.4/1.5

CC 2/2.2 1/0.1 1/1.6 4/2.3 1/0.8 1.8/1.4

SNF.CC 2/3.8 1/0.4 1/2.9 3/0.9 1/1.8 1.6/2.0

PINS 3/3.4 1/0.4 1/2.7 3/0.3 1/1.2 1.8/1.6

LRAcluster 3/2.0 1/0.3 1/1.6 2/3.8 1/1.1 1.6/1.8

NEMO 2/1.9 1/0.1 1/3.9 2/1.1 1/1.2 1.4/1.6

DSML 3/3.9 1/1.0 2/2.3 3/1.9 1/1.9 2.0/2.2

Note: Within each cell, the first number indicates significant clinical param-

eters detected, the second number is �log10 P-value for survival, 0.05 is

selected as the threshold for significance and the significant results are shown

in bold. Mean is algorithm average.
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Therefore, DSML could produce significant coherent and clinically
relevant patient subtypes.

To evaluate the robustness of the proposed DSML to varying
parameter k2, we select its value from the candidate set and execute
DSML on the BIC cancer dataset with three-omics. Figure 4 shows
the number of significantly enrichment and �log10 logrank P-value
with varying k2. It can be seen from the figure that changing k2 has a
little effect on the prediction performance of cancers. Hence, we can
conclude that DSML is relatively robust to the choice of k2.

3.2 Partial-level omics datasets
In order to evaluate the performance and the flexibility of the algo-
rithm on partial-level omics datasets, we apply DSML in two
scenarios.

In the first scenario, only single-level omics data are available at
diagnosis. Since branch parts in DSML communicate with and learn
from each other in training stage, the weights in single branch net-
works have contained the information from multiple omics data.
Thus, even though there is only one omics data at diagnosis stage,
the branch part can still handle this situation. Specifically, the corre-
sponding branch part within the trained DSML is adopted to obtain
the similarity matrix among given single-level data. Then, spectral
clustering based on this similarity matrix is utilized to identify can-
cer subtypes. We select conventional spectral clustering on original
single-level data for comparisons. Comparison results are presented
in Table 2. It is obvious that the performance of clustering using
similarity matrix obtained by branch model is much better than it
only obtained by original single-level data. This phenomenon indi-
cates that the use of mutual learning mechanism can significantly
improve the ability of data representation for subtype prediction.
Even though only one level data is used for subtype’s prediction, it
still archives satisfactory results by using DSML.

In the second scenario, some patients loss omics measurements.
In experiments, we randomly sampled a fraction h of the patients
and removed their mRNA expression, as described in NEMO
(Rappoport and Shamir, 2019). This procedure is repeated five
times. The survival analysis and enrichment of clinical labels are still
adopted to measure the quality of the prediction solutions. Average
results of DSML and NEMO on all five cancer types are shown in
Figure 5. The figure reveals that DSML gives a better performance
than NEMO with respect to survival and enrichment analysis under
all missing rates. These results suggest that DSML can be robustly
applied to partial-level omics datasets.

In general, the proposed DSML can obtain the cancer subtypes
with statistically significant difference in survival profiles and sig-
nificant clinical enrichment. Moreover, DSML can effectively solve
the problem of partial-level omics data. Hence, DSML is a powerful
framework for predicting cancer subtypes.

4 Conclusion

Cancer subtypes prediction plays an important role in personalized
medicine framework, since stratifying patients correctly into sub-
types can provide more targeted treatment and it would ultimately
lead to better survival rates of patients. Integrating multiple level
omics data can significantly improve clinical outcome predictions,
since cancer is a phenotypic end-point incident cumulated via mul-
tiple levels in biological system from genome to proteome. In this
study, a method called DSML has been proposed for subtype’s pre-
diction by integrating multi-level omics data. DSML employs deep
neural networks by incorporating subspace learning and mutual
learning to recover the intrinsic similarity relationships among intra-
level and across level data, and then adopts spectral clustering to
predict patient subtypes. DSML can extract discriminative features
simultaneously from multiple branch parts and fuze features via
main-stem part. The mutual learning strategy provides an effective
solution to the problem of partial-level data missing. Experimental
results on five TCGA multiple omics datasets clearly indicate that
DSML has better integrative performance compared to other rele-
vant technologies. Moreover, DSML also effectively overcomes the
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Fig. 4. Robustness analysis for DSML

Table 2. Prediction performance comparison of spectral clustering

and branches within DSML on each single omics data

Spectral clustering Branches within DSML

mRNA miRNA DNAm mRNA miRNA DNAm

BIC 2/1.4 2/0.5 1/0.7 3/2.9 2/1.8 2/1.7

COAD 0/0.3 0/0.4 0/0.6 1/0.9 0/0.5 1/0.6

GBM 1/0.9 1/0.8 1/0.4 1/2.0 1/1.9 2/1.8

KRCCC 1/0.6 1/1.0 1/0.1 2/1.9 1/2.0 2/1.9

LSCC 1/0.2 1/0.5 1/0.3 1/1.0 1/0.9 1/1.7

Mean 1.0/0.7 1.0/0.6 0.8/0.4 1.6/1.7 1.0/1.4 1.6/1.5

Note: mRNA, miRNA and DNAm denote mRNA expression, miRNA

expression and DNA methylation data, respectively. The numbers in each cell

have the same meaning as in Table 1.
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Fig. 5. Average performance as a function of the fraction of samples missing data in

mRNA expression. The top plot shows the results of enriched clinical parameters

and the bottom plot shows the results of survival analysis
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prediction issues related to single-level omics data and partial-level
omics data. Thus, DSML is a more general framework for multi-
level omics data integrative analysis. As a scope of future work, we
plan to involve protein–protein interaction networks to improve the
interpretability of integrative strategy.
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